scholarly journals l-Isoleucine Administration Alleviates DSS-Induced Colitis by Regulating TLR4/MyD88/NF-κB Pathway in Rats

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiangbing Mao ◽  
Rui Sun ◽  
Qingxiang Wang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Inflammatory bowel disease (namely, colitis) severely impairs human health. Isoleucine is reported to regulate immune function (such as the production of immunoreactive substances). The aim of this study was to investigate whether l-isoleucine administration might alleviate dextran sulfate sodium (DSS)-induced colitis in rats. In the in vitro trial, IEC-18 cells were treated by 4 mmol/L l-isoleucine for 12 h, which relieved the decrease of cell viability that was induced by TNF-α (10 ng/ml) challenge for 24 h (P <0.05). Then, in the in vivo experiment, a total of 44 Wistar rats were allotted into 2 groups that were fed l-isoleucine-supplemented diet and control diet for 35 d. From 15 to 35 d, half of the rats in the 2 groups drank the 4% DSS-adding water. Average daily gain, average daily feed intake and feed conversion of rats were impaired by DSS challenge (P <0.05). Drinking the DSS-supplementing water also increased disease activity index (DAI) and serum urea nitrogen level (P <0.05), shortened colonic length (P <0.05), impaired colonic enterocyte apoptosis, cell cycle, and the ZO-1 mRNA expression (P <0.05), increased the ratio of CD11c-, CD64-, and CD169-positive cells in colon (P <0.05), and induced extensive ulcer, infiltration of inflammatory cells, and collagenous fiber hyperplasia in colon. However, dietary l-isoleucine supplementation attenuated the negative effect of DSS challenge on growth performance (P <0.05), DAI (P <0.05), colonic length and enterocyte apoptosis (P <0.05), and dysfunction of colonic histology, and downregulated the ratio of CD11c-, CD64-, and CD169-positive cells, pro-inflammation cytokines and the mRNA expression of TLR4, MyD88, and NF-κB in the colon of rats (P <0.05). These results suggest that supplementing l-isoleucine in diet improved the DSS-induced growth stunting and colonic damage in rats, which could be associated with the downregulation of inflammation via regulating TLR4/MyD88/NF-κB pathway in colon.

2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zengjie Zheng ◽  
Hailong Jiang ◽  
Yan Huang ◽  
Jie Wang ◽  
Lei Qiu ◽  
...  

Abstract Snake has been used for centuries as a traditional Chinese medicine, especially for therapeutic treatment for inflammatory diseases; however, its mechanisms of action and active constituents remain controversial. In our study, a tumor necrosis factor receptor 1 (TNFR1) selective binding peptide, Hydrostatin-SN1 (H-SN1), which was screened from a Hydrophis cyanocinctus venom gland T7 phage display library, was shown to exhibit significant anti-inflammatory activity in vitro and in vivo. As a TNFR1 antagonist, it reduced cytotoxicity mediated by TNF-α in L929 fibroblasts and effectively inhibited the combination between TNF-α with TNFR1 in surface plasmon resonance analysis. H-SN1 was also shown to suppress TNFR1–associated signaling pathways as it minimized TNF-α-induced NF-кB and MAPK activation in HEK293 embryonic kidney and HT29 adenocarcinoma cell lines. We next determined the effect of H-SN1 in vivo using a murine model of acute colitis induced by dextran sodium sulfate, demonstrating that H-SN1 lowered the clinical parameters of acute colitis including the disease activity index and histologic scores. H-SN1 also inhibited TNF/TNFR1 downstream targets at both mRNA and protein levels. These results indicate that H-SN1 might represent a suitable candidate for use in the treatment of TNF-α-associated inflammatory diseases such as inflammatory bowel diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hee Seo ◽  
Hyunbin Seong ◽  
Ga Yun Kim ◽  
Yu Mi Jo ◽  
Seong Won Cheon ◽  
...  

The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. In this study, we developed an anti-inflammatory probiotic starter, Limosilactobacillus reuteri EFEL6901, for use in kimchi fermentation. The EFEL6901 strain was safe for use in foods and was stable under human gastrointestinal conditions. In in vitro experiments, EFEL6901 cells adhered well to colonic epithelial cells and decreased nitric oxide production in lipopolysaccharide-induced macrophages. In in vivo experiments, oral administration of EFEL6901 to DSS-induced colitis mice models significantly alleviated the observed colitis symptoms, prevented body weight loss, lowered the disease activity index score, and prevented colon length shortening. Analysis of these results indicated that EFEL6901 played a probiotic role by preventing the overproduction of pro-inflammatory cytokines, improving gut barrier function, and up-regulating the concentrations of short-chain fatty acids. In addition, EFEL6901 made a fast growth in a simulated kimchi juice and it synthesized similar amounts of metabolites in nabak-kimchi comparable to a commercial kimchi. This study demonstrates that EFEL6901 can be used as a suitable kimchi starter to promote gut health and product quality.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Zhao Deng ◽  
Qi Liu ◽  
Miaomiao Wang ◽  
Hong-Kui Wei ◽  
Jian Peng

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. Nur77, belongs to the NR4A subfamily of nuclear hormone receptors, plays a critical role in controlling the pathology of colitis. The aim of this study is to investigate the protection effect and mechanism of Gly-Pro-Ala (GPA) peptide, isolated from fish skin gelatin hydrolysate, in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and intestinal epithelial cells (IECs) stimulated by lipopolysaccharide (LPS). In vivo, GPA treatment alleviates DSS-induced weight loss, disease activity index (DAI) increase, colon length shortening, and colonic pathological damage. Production of proinflammatory cytokines, ROS, and MDA is significantly decreased by GPA treatment. In vitro, GPA significantly inhibits proinflammatory cytokine production, cytotoxicity, ROS, and MDA in IECs. Furthermore, GPA induces autophagy to suppress inflammation and oxidative stress. GPA promotes Nur77 translocation from the nucleus to mitochondria where it facilitates Nur77 interaction with TRAF6 and p62, leading to the induction of autophagy. In addition, GPA contributed to the maintenance of tight junction architecture in vivo and in vitro. Taken together, GPA, as a Nur77 modulator, could exert anti-inflammatory and antioxidant effects by inducing autophagy in IECs, suggesting that GPA may be promising for the prevention of colitis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mbiantcha Marius ◽  
Dawe Amadou ◽  
Atsamo Albert Donatien ◽  
Ateufack Gilbert ◽  
Yousseu Nana William ◽  
...  

Combretum fragrans (Combretaceae) is a Cameroonian medicinal plant containing various secondary metabolites and traditionally used for the treatment of several pathologies. Two cycloartane-type triterpenes, Combretin A and Combretin B, were isolated from this plant. This study was aimed at evaluating the anti-inflammatory, antioxidant, and anticolitis effects of these compounds. In vitro anti-inflammatory properties were evaluated by inhibition of cyclooxygenase, 5-lipoxygenase, and denaturation of the protein; antioxidant properties were assessed by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), (2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) ABTS•+, capacity tests ferric reducing antioxidant (FRAP), and trapping nitric oxide. For in vivo analysis, we used the model of ulcerative colitis induced by Dextran Sulfate Sodium (DSS). Studies of the anti-inflammatory activity showed that Combretin A and Combretin B had maximal inhibitory activity on cyclooxygenase (71.92% and 89.59%), 5-lipoxygenase (76.68% and 91.21%), and protein denaturation (63.93% and 87.78%). Antioxidant activity on DPPH, ABTS•+, ferric reducing antioxidant capacity (FRAP), and nitric oxide scavenging showed that Combretin A and Combretin B showed good antioxidant activities. These compounds significantly reduced the signs of DSS-induced colitis in the treated animals by preventing the weight loss of the animals, by significantly reducing the disease activity index, improving the condition of the stool, preventing the reduction of the length of the colon, and preventing the degradation of the colon. This study revealed that Combretin A and Combretin B have anti-inflammatory, antioxidant, and curative properties against colitis experimentally induced by DSS in rats.


2021 ◽  
Vol 22 (10) ◽  
pp. 5358
Author(s):  
Katarzyna Tonecka ◽  
Agata Braniewska ◽  
Zofia Pilch ◽  
Zuzanna Sas ◽  
Marcin Skorzynski ◽  
...  

Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200−/− mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200−/− mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.


2021 ◽  
Vol 11 (8) ◽  
pp. 1339-1346
Author(s):  
Wenjing Yang ◽  
Zhe Wang ◽  
Yao Wang ◽  
Fei Mao ◽  
Chen Chen ◽  
...  

The experiments in this paper was to investigate the effect of ectomesenchymal stem cells-conditional medium (EMSCs-CM) in DSS-induced ulcerative colitis (UC) which is expected to provide a therapeutic treatment for DSS-induced UC. Herein, EMSCs were isolated from the nasal cavity of mice and its supernatants without FBS were collected as conditioned medium for EMSCs (EMCSs-CM). The concentrated EMCSs-CM was further prepared by dissolving freeze-dried CM with PBS. Depending on different treatments, C57 mice was classified into normal group, DSS model group and EMSCs-C group. To build model mice, DSS at 3% concentration was accepted. The effects of intervention were assessed on the basis of body weight changes, disease activity index (DAI) score, colon length, pathological variations and colitis biomarkers. Results revealed that EMSCs-CM could express TGF-β, SHH and Laminin in vitro, respectively and significantly reduce the disease activity index and alleviate the severity of mice in vivo. a low level of inflammatory cytokine expression was also monitored in the EMSCs-CM group. In conclusion, EMSCs-CM is conducive to improve the DSS-induced UC, owing to multiple factors secreted by EMSCs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noam Jacob ◽  
Kotaro Kumagai ◽  
Jay P. Abraham ◽  
Yosuke Shimodaira ◽  
Yuefang Ye ◽  
...  

Abstract Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease, modulating the location and severity of inflammation and fibrosis. TL1A expression is increased in inflamed mucosa and associated with fibrostenosing Crohn’s disease. Tl1a-overexpression in mice causes spontaneous ileitis, and exacerbates induced proximal colitis and fibrosis. Intestinal fibroblasts express Death-receptor 3 (DR3; the only know receptor for TL1A) and stimulation with TL1A induces activation in vitro. However, the contribution of direct TL1A-DR3 activation on fibroblasts to fibrosis in vivo remains unknown. TL1A overexpressing naïve T cells were transferred into Rag−/− , Rag−/− mice lacking DR3 in all cell types (Rag−/−Dr3−/−), or Rag−/− mice lacking DR3 only on fibroblasts (Rag−/−Dr3∆Col1a2) to induce colitis and fibrosis, assessed by clinical disease activity index, intestinal inflammation, and collagen deposition. Rag−/− mice developed overt colitis with intestinal fibrostenosis. In contrast, Rag−/−Dr3−/− demonstrated decreased inflammation and fibrosis. Despite similar clinical disease and inflammation as Rag−/−, Rag−/−Dr3∆Col1a2 exhibited reduced intestinal fibrosis and attenuated fibroblast activation and migration. RNA-Sequencing of TL1A-stimulated fibroblasts identified Rho signal transduction as a major pathway activated by TL1A and inhibition of this pathway modulated TL1A-mediated fibroblast functions. Thus, direct TL1A signaling on fibroblasts promotes intestinal fibrosis in vivo. These results provide novel insight into profibrotic pathways mediated by TL1A paralleling its pro-inflammatory effects.


2019 ◽  
Vol 59 (8) ◽  
pp. 1537
Author(s):  
D. Y. Zhang ◽  
H. F. Ji ◽  
S. X. Wang ◽  
H. Liu ◽  
J. Wang ◽  
...  

In this study, we evaluated the probiotic properties of two strains Lactobacillus reuteri ZLR003 and Lactobacillus salivarius ZLS006. The two strains displayed tolerance of acid and heat, and demonstrated antimicrobial ability in vitro. Furthermore, their potential functions in vivo were also tested. A total of 120 crossbred (Landrace × Large White) growing pigs were divided into three groups: a control diet, the same diet supplemented with L. reuteri ZLR003 (2.0 × 109 cfu/kg of diet) or L. salivarius ZLS006 (3.50 × 109 cfu/kg of diet). The results showed that the average daily gain and feed conversion ratio were significantly improved in L. reuteri ZLR003- (1–5 weeks and 1–9 weeks) (P &lt; 0.05) and L. salivarius ZLS006-treated pigs (1–5 weeks, 6–9 weeks and 1–9 weeks) (P &lt; 0.05) compared with the control group. Dietary supplementation with L. salivarius ZLS006 increased the apparent digestibility of nitrogen at Week 9 (P &lt; 0.05). The faecal Lactobacillus populations increased at the end of experiment, and the Escherichia coli and Staphylococcus aureus in faeces decreased in the two Lactobacillus treatments compared with the control at Week 5 (P &lt; 0.05) and Week 9 (P &lt; 0.05), respectively. Furthermore, the total cholesterol, alanine transferase, aspartate transferase, blood urea nitrogen and haptoglobin levels in serum were significantly decreased following L. reuteri ZLR003 and L. salivarius ZLS006 treatments (P &lt; 0.05). In conclusion, these data suggest that the two Lactobacillus strains may be promising candidates for probiotic products in growing-finishing pigs.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 670
Author(s):  
Wang ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Wu ◽  
...  

Trefoil factors (TFFs) are regulatory peptides playing critical roles in mucosal repair and protection against a variety of insults within the gastrointestinal tract. This work aimed to explore the effects of deoxynivalenol (DON) on intestinal TFFs expression using in vivo and in vitro models. In an animal trial, twenty-four 28-d-old barrows (Duroc × Landrace × Large White; initial body weight = 7.6 ± 0.7 kg) were randomly divided into three treatments for 28 days, including a control diet (0.61 mg DON/kg feed), and two levels of DON-contaminated diets containing 1.28 and 2.89 mg DON/kg feed, respectively. Piglets exposed to DON had lower mRNA expression of TFF1, TFF2, TFF3, as well as Claudin-4 in the intestine (P < 0.05). Dietary DON exposure decreased the protein levels of TFF2 and TFF3 in the jejunum as demonstrated by western blot and immunohistochemistry. In intestinal porcine epithelial cells (IPEC-J2), DON depressed the mRNA expression of TFF2, TFF3, and Claudin-4. Overexpression of sterile alpha motif (SAM) pointed domain E26 transformation‐specific (ETS) factor (SPDEF) was found to attenuate DON-induced suppression of TFFs in IPEC-J2 cells. Altogether, our work shows, for the first time, that dietary DON exposure depresses the expression of intestinal TFFs in piglets. Given the fundamental role of TFFs in intestinal mucosal homeostasis, our observations indicate that the DON content in animal feed should be strictly controlled based on the existing regulation for DON.


Sign in / Sign up

Export Citation Format

Share Document