scholarly journals Ability to Swim (Not Morphology or Environment) Explains Interspecific Differences in Crinoid Arm Regrowth

2022 ◽  
Vol 8 ◽  
Author(s):  
Angela Stevenson ◽  
Tadhg C. Ó Corcora ◽  
Christopher D. G. Harley ◽  
Tomasz K. Baumiller

Regrowth of body parts occurs in almost every phylum of the animal kingdom, but variation in this process across environmental, morphological, and behavioral gradients remains poorly understood. We examined regeneration patterns in feather stars – a group known for a wide range of morphologies and behaviors and up to a forty-fold difference in arm regeneration rates – and found that the variation in arm regeneration rates is best explained by swimming ability, not temperature, food supply, morphology (total number of arms and number of regenerating arms), or degree of injury. However, there were significant interactive effects of morphology on rates of regeneration of the main effect (swimming ability). Notably, swimmers grew up to three-fold faster than non-swimmers. The temperate feather star Florometra serratissima regenerated faster under warmer scenarios, but its rates fell within that of the tropical species suggesting temperature can account for intraspecific but not interspecific differences. We urge comparative molecular investigations of crinoid regeneration to identify the mechanisms responsible for the observed interspecific differences, and potentially address gaps in stem cell research.

2020 ◽  
Vol 21 (8) ◽  
pp. 2718 ◽  
Author(s):  
Yasmine Lund-Ricard ◽  
Patrick Cormier ◽  
Julia Morales ◽  
Agnès Boutet

A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.


1986 ◽  
Vol 14 (4) ◽  
pp. 201-218 ◽  
Author(s):  
A. G. Veith

Abstract This four-part series of papers addresses the problem of systematic determination of the influence of several tire factors on tire treadwear. Both the main effect of each factor and some of their interactive effects are included. The program was also structured to evaluate the influence of some external-to-tire conditions on the relationship of tire factors to treadwear. Part I describes the experimental design used to evaluate the effects on treadwear of generic tire type, aspect ratio, tread pattern (groove or void level), type of pattern (straight rib or block), and tread compound. Construction procedures and precautions used to obtain a valid and functional test method are included. Two guiding principles to be used in the data analyses of Parts II and III are discussed. These are the fractional groove and void concept, to characterize tread pattern geometry, and a demonstration of the equivalence of wear rate for identical compounds on whole tread or multi-section tread tires.


1998 ◽  
Vol 201 (24) ◽  
pp. 3355-3366
Author(s):  
C Swanson

The euryhaline milkfish (Chanos chanos) is an excellent subject for studies of the physiological and behavioral processes involved in salinity adaptation. In this study, energy partitioning for metabolism, activity and growth, maximal activity performance and blood osmotic concentrations were assessed at two activity levels in juvenile milkfish fed equal rations and maintained at a relatively constant temperature (262 C) and at salinities(15, 35 and 55 ?) that represented a wide range of osmoregulatory challenges. Changes in the measured parameters were not consistently related to the magnitude of the trans-integumentary osmotic gradients. Routine oxygen consumption rates were high in 35 ? salinity (mean 1 s.e.m. 1678 mg O2 kg-1 h-1) and comparably low in 15 and 55 ? salinity (1336 and 1273 mg O2 kg-1 h-1, respectively). Routine activity levels (relative swimming velocity) were highest in 35 ? salinity (0. 960.04 L s-1), where L is standard length, intermediate in 15 ? salinity (0.770.03 L s-1) and lowest in 55 ? salinity (0.670.03 L s-1). Growth was significantly higher in 55 ? salinity (3.40.2 % increase in wet body mass per day) than in 35 ?salinity (2.40.2 % increase per day) and intermediate in 15 ? salinity(2.90.5 % increase per day). Maximum swimming velocities decreased with increases in salinity, from 9.90.7 L s-1 in 15 ? salinity to 6.60. 5 L s-1 in 55 ? salinity. Sustained swimming activity above routine levels for 2 h resulted in an increase in blood osmotic concentrations in milkfish in 55 ?salinity, but osmoregulation was re-established during the second 2 h of activity. Thus, patterns of variation in metabolic rate and growth were largely parallel to variations in routine activity although, comparing 15 and 55 ? salinity, elevated maintenance costs for osmoregulation at the high salinity were detectable. Reduced osmoregulatory abilities and reductions in maximal swimming performance suggest that high salinity may constrain activity. The results demonstrate that investigations of salinity adaptation in euryhaline fishes should take into account the interactive effects of salinity on physiology and behavior.


2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


Author(s):  
Robert Al-Chokhachy ◽  
Mike Lien ◽  
Bradley B. Shepard ◽  
Brett High

Climate change and non-native species are considered two of the biggest threats to native salmonids in North America. We evaluated how non-native salmonids and stream temperature and discharge were associated with Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) distribution, abundance, and body size, to gain a more complete understanding of the existing threats to native populations. Allopatric Yellowstone cutthroat trout were distributed across a wide range of average August temperatures (3.2 to 17.7ºC), but occurrence significantly declined at colder temperatures (<10 ºC) with increasing numbers of non-natives. At warmer temperatures occurrence remained high, despite sympatry with non-natives. Yellowstone cutthroat trout relative abundance was significantly reduced with increasing abundance of non-natives, with the greatest impacts at colder temperatures. Body sizes of large Yellowstone cutthroat trout (90th percentile) significantly increased with warming temperatures and larger stream size, highlighting the importance of access to these more productive stream segments. Considering multiple population-level attributes demonstrates the complexities of how native salmonids (such as Yellowstone cutthroat trout) are likely to be affected by shifting climates.


Author(s):  
G. W. Bryan ◽  
P. E. Gibbs

INTRODUCTIONIntracellular calcium granules rich in phosphorus are found throughout the animal kingdom and occur in a wide range of different tissues (Simkiss, 1976; Mason & Nott, 1981). However, few examples of the natural occurrence of such granules in muscle cells have been recorded and thus the discovery of abundant granules composed of calcium phosphate within the muscle fibres of the polychaete Nephtys, described by Gibbs & Bryan (1984), is of considerable interest, particularly regarding the formation and function of these unusual sarcoplasmic inclusions.


1979 ◽  
Vol 27 (3) ◽  
pp. 285 ◽  
Author(s):  
JR Withers

Casuarina littoralis seedlings are inherently more drought-resistant than Eucalyptus ovata seedlings over a wide range of environmental conditions. Moderate shade pre-treatment (30% of full daylight) decreased the drought resistance of seedlings of E. ovata, Acacia pycnantha and C. stricta but not that of C. littoralis seedlings. Deep shade pre-treatment (8 % of full daylight) decreased the drought resistance of all species and was associated with decreased rootlshoot ratios. Both shaded and non-shaded C. littoralis seedlings closed stomata at higher relative water contents (about 80% and 88 % respectively) than did E. ovata seedlings (about 36 % and 63 % respectively). Shading decreased the relative water content at which E. ovata closed stomata and reduced the relative decrease in water potential which occurred with unit decreases in relative water content. When E. ovata and C. littoralis seedlings were grown in competition, the larger E. ovata dominated the drought response of plants under both high and low light conditions. E. ovata rapidly depleted moisture supplies thereby subjecting C. littoralis to greater stress and earlier death than it experienced in monoculture. C. littoralis seedlings grown and droughted in competition with E. ovata exhibited smaIIer decreases in water potential per unit decrease in relative water content than seedlings grown in monoculture. The height growth of E. ovata grown in monoculture and in competition with C. littoralis was reduced for at least 10-15 weeks after the wilting treatment, but height growth of C. littoralis was not affected. Eucalypts wilted at higher water potentials (-4.3 MPa) than did C. littoralis seedlings (- 6.3 MPa). It is suggested that the replacement of E. ovata by C. littoralis at Ocean Grove, Vic. may be partly due to the differential effects of shading on the drought resistance of seedlings which become established in the grass sward of canopy gaps.


2020 ◽  
Vol 31 (4) ◽  
pp. 971-977 ◽  
Author(s):  
Mark Dyble ◽  
Tim H Clutton-Brock

Abstract Comparative studies of mammals confirm Hamilton’s prediction that differences in cooperative and competitive behavior across species will be related to contrasts in kinship between group members. Although theoretical models have explored the factors affecting kinship within social groups, few have analyzed the causes of contrasts in kinship among related species. Here, we describe interspecific differences in average kinship between group members among social mammals and show that a simple mathematical model that includes the number of breeding females, male reproductive skew, and litter size successfully predicts ~95% of observed variation in average kinship between group members across a sample of mammals. Our model shows that a wide range of conditions can generate groups with low average relatedness but only a small and rather specific set of conditions are likely to generate high average levels of relatedness between their members, providing insight into the relative rarity of advanced forms of cooperation in mammalian societies.


1987 ◽  
Vol 63 (1) ◽  
pp. 229-237 ◽  
Author(s):  
E. van Lunteren

The interactive effects of upper airway negative pressure and hypercapnia on the pattern of breathing were assessed in pentobarbital-anesthetized cats. At any given level of pressure in the upper airway, hypercapnia increased respiratory rate, reduced inspiratory time, and augmented tidal volume, inspiratory airflow, and the peak and rate of rise of diaphragm electrical activity. Conversely, at any given level of CO2, upper airway negative pressure decreased respiratory rate, prolonged inspiratory time, and depressed inspiratory airflow and diaphragm electromyogram (EMG) rate of rise. Application of negative pressure to the upper airway shifted the relationship between tidal volume and inspiratory time upward and rightward. The relationship between inspiratory and expiratory times, however, was linearly correlated over a wide range of chemical drives and levels of upper airway pressure. These results suggest that in the anesthetized cat upper airway negative pressure afferent inputs 1) interact in an additive fashion with hypercapnia to alter the pattern of breathing, 2) interact multiplicatively with CO2 to influence mean inspiratory airflow and diaphragm EMG rate of rise, 3) depress the generation of central inspiratory activity, 4) increase the time-dependent volume threshold for inspiratory termination, and 5) affect the ratio between inspiratory and expiratory times in a similar manner as alterations in PCO2.


1985 ◽  
Vol 50 (1) ◽  
pp. 3-26 ◽  
Author(s):  
Melody Shimada ◽  
Izumi Shimada

There is no clear-cut consensus or reliable body of published data in the Andean literature indicating whether llamas were bred and herded on the prehistoric North Coast of Peru or periodically imported from the highlands. Based on four lines of evidence—ethnographic, archaeozoological, physiological, and ethnohistoric—we argue that llamas (and perhaps even alpacas) were successfully bred and maintained on the North Coast from the early Middle Horizon (ca. A.D. 600) and perhaps since the Early Horizon. More specifically, we discuss population structure, representation of body parts, climatic and dietary adaptability, and abundance of coastal forage. Both llamas and alpacas are physiologically well-adapted for the coastal environment and can efficiently process a wide range of forage. By the Middle Horizon, domestic camelids served a wide range of functions including transport, sacrifice, tools, and meat. Species identification, coastal herd management, effects of disease vectors, and other related issues are also discussed.


Sign in / Sign up

Export Citation Format

Share Document