scholarly journals Introduction of Colonic and Fecal Microbiota From an Adult Pig Differently Affects the Growth, Gut Health, Intestinal Microbiota and Blood Metabolome of Newborn Piglets

2021 ◽  
Vol 12 ◽  
Author(s):  
Renli Qi ◽  
Zhuo Zhang ◽  
Jing Wang ◽  
Xiaoyu Qiu ◽  
Qi Wang ◽  
...  

Microbiota transplantation is a rapid and effective method for changing and reshaping the intestinal microbiota and metabolic profile in humans and animals. This study compared the different influences of the introduction of fecal microbes and colonic microbes from a fat, adult pig in newborn pigs. Both colonic microbiota transplantation (CMT) and fecal microbiota transplantation (FMT) promoted growth and improved gut functions in suckling pigs up to weaning. FMT was more beneficial for body weight gain and body fat deposition in piglets, while CMT was more beneficial for intestinal health and mucosal immunity. 16S rDNA sequence analysis indicated that both CMT and FMT significantly increased the abundances of beneficial or functional bacteria, such as Lactobacillus and Prevotella_2 genera, in the piglets, and reduced the abundances of harmful bacteria, such as Escherichia–Shigella. Blood metabolome analysis showed that transplantation, especially FMT, enhanced lipid metabolism in piglets. In addition, while CMT also changed amino acid metabolism and increased anti-inflammatory metabolites such as 3-indoleacetic acid and 3-indolepropionic acid in piglets, FMT did not. Of note, FMT damaged the intestinal barrier of piglets to a certain extent and increased the levels of inflammatory factors in the blood that are potentially harmful to the health of pigs. Taken together, these results suggested that intestinal and fecal microbiota transplantations elicited similar but different physiological effects on young animals, so the application of microbiota transplantation in animal production requires the careful selection and evaluation of source bacteria.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 305-306
Author(s):  
Quanhang Xiang ◽  
Jian Peng

Abstract The objective of this study was to investigate the effects of early gut colonization by fecal microbiota transplantation and probiotics intervention on growth performance, immunity function, and gut health of piglets. A total of 121 pregnant sows were divided into 6 groups with average parity of 3.66 ± 1.34. After delivery, piglets of group AB were treated with antibiotics at age of 3-day. Piglets of group CON were gavaged with PBS. The remaining four treatment groups, FMT, FMT+C, FMT+S, and FMT+C+S, the piglets were gavaged with fecal suspension, fecal suspension with C. butyricum, fecal suspension with S. boulardii, and fecal suspension with C. butyricum and S.boulardii, respectively, with the frequency of once daily in the first 3 days. All the piglets were weaned at age of 21 day. The individual body weight of piglets were weighed weekly, blood samples and fecal samples were collected weekly. At the end of study, the ADG and diarrhea rate were caculated. FMT+C+S and FMT could increased piglets 21-day-old weight (P < 0.01), and FMT+C+S could increased ADG (P < 0.05) and decreased diarrhea rate (P < 0.05). Early antibiotics exposure for health care has no positive effect on growth performance and diarrhea. FMT, FMT+S and FMT+C+S improved fecal sIgA and plasma IgG of 14-day-old piglets (P < 0.05). FMT+C+S decreased the concentration of plasma DAO and D-LA, and increased fecal MUC2 content, so that the intestinal barrier was enhanced. The early intervention of FMT combined with C. butyricum and S. boulardii reduced the abundance of E. coli, and increased the abundance of Lactobacillus, Bifidobacterium and Faecalibacterium prausnitzii. In addition, it also increases the production of intestinal short-chain fatty acids. In conclusion, these data indicated that early intervention with FMT combined C. butyricum and S. boulardii could improve the growth performance, immune responses, and gut function of sucking piglets.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 123-126 ◽  
Author(s):  
Walter Reinisch

The etiology of inflammatory bowel disease (IBD) is unknown, but it is thought to arise from an aberrant immune response to a change in colonic environment in a genetically susceptible individual. The intestinal microbiota are located at the complex interface of the epithelial barrier and are sensitive to changes in environmental factors, such as diets, drugs or smoking and signals derived from the intestinal immune system and the gut-brain axis. In patients with IBD, an imbalance in the structural and/or functional configuration of the intestinal microbiota leading to the disruption of the host-microorganism homeostasis (dysbiosis) has been reproducibly reported. As animal models of IBD require gut bacteria to induce inflammation, it is hypothesized that the dysbiosis observed in patients is not only a surrogate of changes at the intestinal barrier but also a potential cause or at least enhancer of the mucosal inflammatory process. That burgeoning notion has stimulated thoughts to modify the intestinal microbiota and rekindled interest in previous work on the efficacy of antibiotics in patients with IBD. The feasibility and tremendous success of fecal microbiota transplantation (FMT) to treat antibiotic resistant Clostridium difficile has finally paved the way to embark into the unchartered territory of IBD using FMT. Different routes and number of administrations, choices of donors, disease status and permitted therapies might have contributed to mixed results, particularly from the so far published randomized controlled trials. However, microbiome analysis suggests that a durable transplantation of donor bacteria to the host appears feasible and might be associated with a higher likelihood of response. On the other hand, this raises the concern of transplanting not only anti-inflammatory active bacteria and their products, but also not-yet-known dispositions for other diseases including cancer. Attempts are being made to better characterize those components of the microbiome of healthy individuals, which might mediate anti-inflammatory functions and assemble ‘synthetic stools' for more standardized treatment approaches.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Peiyun Liu ◽  
Wangting Zhou ◽  
Weiqi Xu ◽  
Yujia Peng ◽  
Yamei Yan ◽  
...  

Anthocyanins have been shown to exert certain antiobesity properties, but the specific relationship between anthocyanin-induced beneficial effects and the gut microbiota remains unclear. Petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) (P3G) is the main anthocyanin monomer from the fruit of Lycium ruthenicum Murray. Therefore, in this study, we investigated the antiobesity and remodeling effects of P3G on gut microbiota through a high-fat diet (HFD)-induced obesity mouse model and a fecal microbiota transplantation experiment. P3G was found to reduce body weight gain, fat accumulation, and liver steatosis in HFD-induced obese mice. Moreover, supplementation with P3G alleviated the HFD-induced imbalance in gut microbiota composition, and transferring the P3G-regulated gut microbiota to recipient mice provided comparable protection against obesity. This is the first time evidence is provided that P3G has an antiobesity effect by changing the intestinal microbiota. Our present data highlight a link between P3G intervention and enhancement in gut barrier integrity. This may be a promising option for obesity prevention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangyuan Zhu ◽  
Yifan Ke ◽  
Yiting Luo ◽  
Jiaqian Wu ◽  
Pei Wu ◽  
...  

Background: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with abdominal pain, mucus, pus and blood in the stool as the main clinical manifestations. The pathogenesis of UC is still not completely clear, and multiple factors, such as genetic susceptibility, immune response, intestinal microecological changes and environmental factors, together lead to the onset of UC. In recent years, the role of intestinal microbiota disturbances on the pathogenesis of UC has received widespread attention. Therefore, fecal microbiota transplantation (FMT), which changes the intestinal microecological environment of UC patients by transplantation of normal fecal bacteria, has attracted increasing attention from researchers. However, there are no guidelines to recommend fresh FMT or frozen FMT in the treatment of UC, and there are few studies on this. Therefore, the purpose of this study was to explore the effects of fresh and frozen FMT methods on the treatment of experimental UC models in rats.Results: Compared with the model control group, all FMT groups achieved better efficacy, mainly manifested as weight gain by the rats, improvements in fecal characteristics and blood stools, reduced inflammatory factors and normal bacterial microbiota. The efficacy of the frozen FMT group was better than that of the fresh FMT group in terms of behavior and colon length.Conclusion: FMT method supplements the gut microbiota with beneficial bacteria, such as short-chain fatty acid-producing bacteria. These bacteria can regulate intestinal function, protect the mucosal barrier and reduce harmful bacteria, thus mitigating the damage to the intestinal barrier and the associated inflammatory response, resulting in UC remission. FMT is a feasible method for treating UC, with frozen FMT having a superior therapeutic effect than that of fresh FMT.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


Author(s):  
Phillipp Hartmann ◽  
Bernd Schnabl

AbstractAlcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are important causes of morbidity and mortality worldwide. The intestinal microbiota is involved in the development and progression of both ALD and NAFLD. Here we describe associated changes in the intestinal microbiota, and we detail randomized clinical trials in ALD and NAFLD which evaluate treatments modulating the intestinal microbiome including fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics. Finally, we discuss precision medicine approaches targeting the intestinal microbiome to ameliorate ALD and NAFLD.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052093128
Author(s):  
Qiuwei Li ◽  
Liying Guo ◽  
Li Wang ◽  
Jing Miao ◽  
Huantian Cui ◽  
...  

Objective To identify potentially effective bacterial components of gold juice, a traditional Chinese medicine treatment used for fecal microbiota transplantation. Methods Fecal samples were collected from five healthy children (two boys and three girls; mean age, 7.52 ± 2.31 years). The children had no history of antibiotic use or intestinal microecological preparation in the preceding 3 months. Fresh fecal samples were collected from children to prepare gold juice in mid-to-late November, in accordance with traditional Chinese medicine methods, then used within 7 days. Finally, 16S rDNA sequence analysis was used to identify potentially effective bacterial components of gold juice. QIIME software was used for comparisons of microbial species among gold juice, diluent, filtrate, and loess samples. Results Microflora of gold juice exhibited considerable changes following “ancient method” processing. Microbial components significantly differed between gold juice and filtrate samples. The gold juice analyzed in our study consisted of microbes that synthesize carbohydrates and amino acids by degrading substances, whereas the filtrate contained probiotic flora, Bacteroides, and Prevotella 9. Conclusions This study of microbial components in gold juice and filtrate provided evidence regarding effective bacterial components in gold juice, which may aid in clinical decisions concerning fecal microbiota transplantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ma Liang ◽  
Zhang Liwen ◽  
Song Jianguo ◽  
Dai Juan ◽  
Ding Fei ◽  
...  

Intestinal microbiota (IM) dysbiosis contributes to the development of autoimmune hepatitis (AIH). This study aimed to investigate the potential effect of fecal microbiota transplantation (FMT) in a murine model of experimental AIH (EAH), a condition more similar to that of AIH patients. Changes in the enteric microbiome were determined in AIH patients and EAH mice. Moreover, we established an experimental model of secondary EAH mice harboring dysbiosis (ABx) to analyze the effects of therapeutic FMT administration on follicular regulatory T (TFR) and helper T (TFH) cell imbalances and IM composition in vivo. Alterations of the IM composition and bacterial translocation occurred in AIH patients compared to nonalcoholic fatty liver disease patients and healthy controls (HCs). Therapeutic FMT significantly attenuated liver injury and bacterial translocation and improved the imbalance between splenic TFR cells and TFH cells in ABx EAH mice. Furthermore, therapeutic FMT also partially reversed the increasing trend in serum liver enzymes (ALT and AST) of CXCR5−/−EAH mice on the 28th day. Finally, therapeutic FMT could effectively restore antibiotic-induced IM dysbiosis in EAH mice. Taken together, our findings demonstrated that FMT was capable of controlling hepatitis progression in EAH mice, and the associated mechanism might be involved in the regulation of the TFR/TFH immune imbalance and the restoration of IM composition.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zongxin Ling ◽  
Yiwen Cheng ◽  
Xiumei Yan ◽  
Li Shao ◽  
Xia Liu ◽  
...  

Mounting evidence indicates that alterations in the intestinal microbiota may be associated with neurological disorders such as multiple sclerosis (MS). MS is a putative autoimmune disease of the central nervous system. However, it has not been determined whether the intestinal microbiota and host immune status are altered in Chinese patients with stable MS. In our study, 22 Chinese patients with stable MS and 33 healthy controls were enrolled for fecal microbiota analysis and host immunity evaluation. The microbial diversity and composition, bacterial co-occurrence correlations, predictive functional profiles, and microbiota-cytokine correlations between the two groups were compared. We observed that while the overall structure of the fecal microbiota did not change significantly, the abundances of several key functional bacteria, primarily Faecalibacterium, decreased remarkably. Faecalibacterium and Granulicatella could be used to distinguish between patients with MS and healthy controls with an area under the curve of 0.832. PiCRUSt analysis revealed that genes associated with fructose, mannose, and fatty acid metabolism were significantly enriched in the MS microbiota. In addition, we also observed that the levels of several pro- and anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-8, IL-17, and TNF-α changed observably, and the abundances of key functional bacteria like butyrate producers correlated with the changes in the cytokine levels. Our present study indicated that altered composition of the fecal microbiota might play vital roles in the etiopathogenesis of MS by regulating host immunity, which suggests that microbiota-targeting patient-tailored early intervention techniques might serve as novel therapeutic approaches for MS.


Sign in / Sign up

Export Citation Format

Share Document