scholarly journals The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations

2021 ◽  
Vol 15 ◽  
Author(s):  
Carlos del Pilar ◽  
Rafael Lebrón-Galán ◽  
Ester Pérez-Martín ◽  
Laura Pérez-Revuelta ◽  
Carmelo Antonio Ávila-Zarza ◽  
...  

The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
Denise Utami Putri ◽  
Cheng-Hui Wang ◽  
Po-Chun Tseng ◽  
Wen-Sen Lee ◽  
Fu-Lun Chen ◽  
...  

The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii18-ii18
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Dapeng Hao ◽  
Krishna Bojja ◽  
Tuan M Tran ◽  
...  

Abstract The brain tumor immune microenvironment (TIME) continuously evolves during glioma progression, but a comprehensive characterization of the glioma-centric immune cell repertoire beyond a priori cell states is uncharted. In this study, we performed single-cell RNA-sequencing (scRNA-seq) and single cell- Assay for Transposase-Accessible Chromatin using sequencing (sc-ATAC-seq) on ~100,000 tumor-associated immune cells from seventeen isocitrate dehydrogenase (IDH) mutation classified primary and recurrent human gliomas and non-glioma brains (NGBs). Our analyses revealed sixty-two transcriptionally distinct myeloid and lymphoid cell states within and across glioma subtypes and we noted microglial attrition with increasing disease severity concomitant with invading monocyte-derived cells and lymphocytes. Specifically, certain microglial and monocyte-derived subpopulations were associated with antigen presentation gene modules, akin to cross-presenting dendritic cells (DCs). We identified cytotoxic T cells with poly-functional cytolytic states mostly in recurrent IDH-wt gliomas. Furthermore, ligand-receptor interactome analyses showed a preponderance of antigen presentation and phagocytosis over the checkpoint axis in IDH-wt compared to IDH-mut gliomas. Additionally, our sc-ATAC-seq analyses revealed differences in regulatory networks in NGBs, IDH-mut and IDH-wt glioma associated immune cells. In particular, we noted abundant usage of inflammatory transcription factors (TFs) as exemplified by Nuclear factor kappa B and Activator Protein-1 TF family in IDH-wt microglia when compared with microglia from IDH-mut and NGBs. Unique features such as amplification of 11- Zinc Finger Protein accessibility were restricted to monocyte derived cells and were not observed in microglia. Finally, sc-ATAC-seq profiles of CD8+ exhausted T cells from IDH-wt showed strong enhancer accessibility on Cytotoxic T-lymphocyte-associated protein 4, Layilin and Hepatitis A Virus Cellular Receptor 2 but no enrichment on PDCD1 (gene encoding Programmed cell death protein 1) was seen. In summary, our study provides unprecedented granular detail of transcriptionally defined glioma- specific immune contexture that can be exploited for immunotherapy applications. This study in K.B. laboratory was supported by the generous philanthropic contributions to The University of Texas (UT) MD Anderson Cancer Center (MDACC) Moon Shots Program™, Marnie Rose Foundation, NIH grants: R21 CA222992 and R01CA225963. This study was partly supported by the UT MDACC start-up research fund to L.W. and CPRIT Single Core grant RP180684 to N. E. N.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi102-vi102
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Dapeng Hao Hao ◽  
Krishna Bojja ◽  
Tuan M Tran ◽  
...  

Abstract The immune cell composition of isocitrate dehydrogenase wild type (IDH-wt) glioma patients significantly differs compared to IDH-mutant (IDH-mut) yet a detailed and unbiased understanding of their transcriptomic and epigenetic landscapes remains elusive. To this end, we performed single-cell RNA-sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin using sequencing (sc-ATAC-seq) on ~100,000 tumor-associated immune cells from seventeen IDH mutation classified primary and recurrent human gliomas and non-glioma brains (NGBs). Our analyses revealed sixty-two transcriptionally distinct myeloid and lymphoid cell states within and across glioma subtypes and we noted microglial attrition with increasing disease severity concomitant with invading monocyte-derived cells (MDCs) and lymphocytes. Specifically, certain microglial and monocyte-derived subpopulations were associated with antigen presentation gene modules, akin to cross-presenting dendritic cells. As tissue macrophages exhibit multifaceted polarization in response to microenvironmental cues, we clarify the existence of microglia/macrophage functional states beyond M1/M2 paradigms exemplified by the presence of palmitic-, oleic- acid, and glucocorticoid responsive polarized states. We identified cytotoxic T cells with poly-functional cytolytic states mostly in recurrent IDH-wt gliomas. Furthermore, ligand-receptor interactome analyses showed a preponderance of antigen presentation/phagocytosis over the checkpoint axis in IDH-wt compared to IDH-mut gliomas. Additionally, our sc-ATAC-seq analyses revealed differences in regulatory networks in NGBs, IDH-mut, and IDH-wt glioma-associated immune cells. In particular, we noted reduced microglial usage of an iron recycling SPIC transcription factor and Interferon Regulatory Factors (IRFs); IRF1 and IRF2 in IDH-wt relative to IDH-mut and NGBs. Unique features such as amplification of 11-Zinc Finger Protein accessibility were restricted to MDCs. Finally, sc-ATAC-seq profiles of CD8+ exhausted T cells from IDH-wt showed strong enhancer accessibility on CTLA-4, Layilin, and TIM-3 but no enrichment on PD1 was seen. In summary, our study provides unprecedented granular detail of transcriptionally and epigenomically defined glioma-specific immune contexture that can be exploited for immunotherapy applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Xu ◽  
Jianping Jia

The peripheral immune system is thought to affect the pathology of the central nervous system in Alzheimer’s disease (AD). However, current knowledge is inadequate for understanding the characteristics of peripheral immune cells in AD. This study aimed to explore the molecular basis of peripheral immune cells and the features of adaptive immune repertoire at a single cell level. We profiled 36,849 peripheral blood mononuclear cells from AD patients with amyloid-positive status and normal controls with amyloid-negative status by 5’ single-cell transcriptome and immune repertoire sequencing using the cell ranger standard analysis procedure. We revealed five immune cell subsets: CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and monocytes–macrophages cells, and disentangled the characteristic alterations of cell subset proportion and gene expression patterns in AD. Thirty-one cell type-specific key genes, comprising abundant human leukocyte antigen genes, and multiple immune-related pathways were identified by protein–protein interaction network and pathway enrichment analysis. We also found high-frequency amplification clonotypes in T and B cells and decreased diversity in T cells in AD. As clone amplification suggested the activation of an adaptive immune response against specific antigens, we speculated that the peripheral adaptive immune response, especially mediated by T cells, may have a role in the pathogenesis of AD. This finding may also contribute to further research regarding disease mechanism and the development of immune-related biomarkers or therapy.


2020 ◽  
Vol 8 (2) ◽  
pp. e000417 ◽  
Author(s):  
Alexandra Borodovsky ◽  
Christine M Barbon ◽  
Yanjun Wang ◽  
Minwei Ye ◽  
Laura Prickett ◽  
...  

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated.MethodsWe report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition.ResultsWe provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies.ConclusionWe provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Liliana M. Sanmarco ◽  
Carolina M. Polonio ◽  
Michael A. Wheeler ◽  
Francisco J. Quintana

Astrocytes are abundant glial cells in the central nervous system (CNS) that control multiple aspects of health and disease. Through their interactions with components of the blood–brain barrier (BBB), astrocytes not only regulate BBB function, they also sense molecules produced by peripheral immune cells, including cytokines. Here, we review the interactions between immune cells and astrocytes and their roles in health and neurological diseases, with a special focus on multiple sclerosis (MS). We highlight known pathways that participate in astrocyte crosstalk with microglia, NK cells, T cells, and other cell types; their contribution to the pathogenesis of neurological diseases; and their potential value as therapeutic targets.


Author(s):  
Josephine Herz ◽  
Ivo Bendix ◽  
Ursula Felderhoff-Müser

Abstract Perinatal brain injury is the leading cause of neurological mortality and morbidity in childhood ranging from motor and cognitive impairment to behavioural and neuropsychiatric disorders. Various noxious stimuli, including perinatal inflammation, chronic and acute hypoxia, hyperoxia, stress and drug exposure contribute to the pathogenesis. Among a variety of pathological phenomena, the unique developing immune system plays an important role in the understanding of mechanisms of injury to the immature brain. Neuroinflammation following a perinatal insult largely contributes to evolution of damage to resident brain cells, but may also be beneficial for repair activities. The present review will focus on the role of peripheral immune cells and discuss processes involved in neuroinflammation under two frequent perinatal conditions, systemic infection/inflammation associated with encephalopathy of prematurity (EoP) and hypoxia/ischaemia in the context of neonatal encephalopathy (NE) and stroke at term. Different immune cell subsets in perinatal brain injury including their infiltration routes will be reviewed and critical aspects such as sex differences and maturational stage will be discussed. Interactions with existing regenerative therapies such as stem cells and also potentials to develop novel immunomodulatory targets are considered. Impact Comprehensive summary of current knowledge on the role of different immune cell subsets in perinatal brain injury including discussion of critical aspects to be considered for development of immunomodulatory therapies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xi Zhang ◽  
Zhihua Shao ◽  
Sutong Xu ◽  
Qiulu Liu ◽  
Chenming Liu ◽  
...  

Parkinson’s disease (PD) is an age-related and second most common neurodegenerative disorder. In recent years, increasing evidence revealed that peripheral immune cells might be able to infiltrate into brain tissues, which could arouse neuroinflammation and aggravate neurodegeneration. This study aimed to illuminate the landscape of peripheral immune cells and signature genes associated with immune infiltration in PD. Several transcriptomic datasets of substantia nigra (SN) from the Gene Expression Omnibus (GEO) database were separately collected as training cohort, testing cohort, and external validation cohort. The immunoscore of each sample calculated by single-sample gene set enrichment analysis was used to reflect the peripheral immune cell infiltration and to identify the differential immune cell types between PD and healthy participants. According to receiver operating characteristic (ROC) curve analysis, the immunoscore achieved an overall accuracy of the area under the curve (AUC) = 0.883 in the testing cohort, respectively. The immunoscore displayed good performance in the external validation cohort with an AUC of 0.745. The correlation analysis and logistic regression analysis were used to analyze the correlation between immune cells and PD, and mast cell was identified most associated with the occurrence of PD. Additionally, increased mast cells were also observed in our in vivo PD model. Weighted gene co-expression network analysis (WGCNA) was used to selected module genes related to a mast cell. The least absolute shrinkage and selection operator (LASSO) analysis and random-forest analysis were used to analyze module genes, and two hub genes RBM3 and AGTR1 were identified as associated with mast cells in the training cohort. The expression levels of RBM3 and AGTR1 in these cohorts and PD models revealed that these hub genes were significantly downregulated in PD. Moreover, the expression trend of the aforementioned two genes differed in mast cells and dopaminergic (DA) neurons. In conclusion, this study not only exhibited a landscape of immune infiltrating patterns in PD but also identified mast cells and two hub genes associated with the occurrence of PD, which provided potential therapeutic targets for PD patients (PDs).


2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 13-13
Author(s):  
Shigehisa Kitano ◽  
Makiko Yamashita ◽  
Kei Muro ◽  
Taroh Satoh ◽  
Kensei Yamaguchi ◽  
...  

13 Background: A phase 1b study was conducted in Japanese patients with >2nd line advanced gastroesophageal adenocarcinoma (GEA) to evaluate the safety, tolerability and explore efficacy and biomarkers, of andecaliximab (ADX), an anti-MMP9 monoclonal antibody, in combination with nivolumab (nivo). In this study, 5 of the 10 enrolled patients had a partial response and the remaining 5 had progressive disease. A larger parallel study in western patients showed no improvement in response or survival for the addition of ADX to nivo. A biomarker study is reported here which explored the hypothesis that baseline levels or early changes in the frequency of peripheral immune cells might identify responders to immunotherapy. Methods: Blood samples were collected at screen, C1D1, C1D8, C1D15, C2D1, C2D15 and then at CXD1 until end of treatment and processed to viably-frozen PBMCs. Immune cell analysis was conducted by flow cytometry (FCM), and included evaluation of T cells, B cells, myeloid derived suppressor cells, NK cells, monocytes, and dendritic cells (DCs). Baseline status and on treatment changes were explored. Results: FCM analysis of peripheral blood showed that the 5 responders had higher frequency of LAG3+CD8+ T cells and myeloid DCs, and lower frequency of plasmacytoid DC than non-responders at baseline. The number of CD8+ T cells decreased at C1D8 and then recovered in responders. In contrast, no CD8+ T cell changes were observed in non-responders. CTLA-4+ CD4+ T cells also increased after treatment in responders but not in non-responders. Changes in other evaluated cell populations were not observed. Conclusions: The observation that baseline levels of LAG3+CD8+ T cells and DCs were higher in responders is consistent with a prior anti-tumor immune response. Transient decreased peripheral CD8+ T cells might reflect T-cell trafficking into tumor in response to immunotherapy, and increased peripheral CTLA-4+ CD4+ T cells may also relate to tumor-localized response. Although in a very small number of patients, the observations are consistent with early changes in peripheral immune cells that may relate to response to immunotherapy. Clinical trial information: NCT02862535.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ran Chen ◽  
Xu Zhang ◽  
Lijuan Gu ◽  
Hua Zhu ◽  
Yi Zhong ◽  
...  

Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.


Sign in / Sign up

Export Citation Format

Share Document