scholarly journals A Combined Flow Cytometric Semen Analysis and miRNA Profiling as a Tool to Discriminate Between High- and Low-Fertility Bulls

2021 ◽  
Vol 8 ◽  
Author(s):  
Federica Turri ◽  
Emanuele Capra ◽  
Barbara Lazzari ◽  
Paola Cremonesi ◽  
Alessandra Stella ◽  
...  

Predicting bull fertility is one of the main challenges for the dairy breeding industry and artificial insemination (AI) centers. Semen evaluation performed in the AI center is not fully reliable to determine the level of bull fertility. Spermatozoa are rich in active miRNA. Specific sperm-borne miRNAs can be linked to fertility. The aim of our study is to propose a combined flow cytometric analysis and miRNA profiling of semen bulls with different fertility to identify markers that can be potentially used for the prediction of field fertility. Sperm functions were analyzed in frozen-thawed semen doses (CG: control group) and high-quality sperm (HQS) fraction collected from bulls with different field fertility levels (estimated relative conception rate or ERCR) by using advanced techniques, such as the computer-assisted semen analysis system, flow cytometry, and small RNA-sequencing. Fertility groups differ for total and progressive motility and in the abnormality degree of the chromatin structure (P < 0.05). A backward, stepwise, multiple regression analysis was applied to define a model with high relation between in vivo (e.g., ERCR) and in vitro (i.e., semen quality and DE-miRNA) fertility data. The analysis produced two models that accounted for more than 78% of the variation of ERCR (CG: R2 = 0.88; HQS: R2 = 0.78), identifying a suitable combination of parameters useful to predict bull fertility. The predictive equation on CG samples included eight variables: four kinetic parameters and four DNA integrity indicators. For the HQS fraction, the predictive equation included five variables: three kinetic parameters and two DNA integrity indicators. A significant relationship was observed between real and predicted fertility in CG (R2 = 0.88) and HQS fraction (R2 = 0.82). We identified 15 differentially expressed miRNAs between high- and low-fertility bulls, nine of which are known (miR-2285n, miR-378, miR-423-3p, miR-191, miR-2904, miR-378c, miR-431, miR-486, miR-2478) while the remaining are novel. The multidimensional preference analysis model partially separates bulls according to their fertility, clustering three semen quality variable groups relative to motility, DNA integrity, and viability. A positive association between field fertility, semen quality parameters, and specific miRNAs was revealed. The integrated approach could provide a model for bull selection in AI centers, increasing the reproductive efficiency of livestock.

2013 ◽  
Vol 25 (1) ◽  
pp. 180 ◽  
Author(s):  
D. Kumar ◽  
P. Kumar ◽  
P. Singh ◽  
S. P. Yadav ◽  
P. S. Yadav

The breeding-soundness examination is conducted to identify and select bulls with an acceptable reproductive efficiency. In buffalo, there is meagre information regarding fertility index in relation to sperm attributes so that a future breeding bull could be selected at the age of maturity. So, to predict the fertility of buffalo breeding bulls, the present study was conducted to assess the motility parameters and integrity of acrosome, plasma membrane, and DNA of cryopreserved semen of high- and low-fertile bulls. The fertility of bulls was classified on the basis of conception rates, where buffalo bulls with conception rate <35% were considered as low-fertility bulls and those with conception rate >55% were considered as high-fertility bulls. A computer-assisted semen analyser was used for motility and viability studies, whereas integrity of acrosome, plasma membrane, and DNA were assessed by Pisum sativum agglutinin–fluorescein isothiocyanate, Annexin-V/PI, and TUNEL assay kit, respectively, under the florescence microscope. At least 200 spermatozoa were evaluated from each group, and results were analysed by ANOVA. The level of significance was observed at P < 0.05. The mean (±SE) values for various motility parameters of sperm for high-fertile bulls were total motility (56.8 ± 3.2%), average path velocity (87.22 ± 1.6 µm s–1), straight linear velocity (68.93 ± 1.9 µm s–1), and curvilinear velocity (156.52 ± 4.3 µm s–1). These values were significantly higher than those of low-fertile bulls (43.8 ± 1.7%, 79.02 ± 2.4 µm s–1, 63.42 ± 1.2 µm s–1, and 142.37 ± 2.8 µm s–1, respectively). The amplitude of lateral head displacement (6.8 ± 0.07 v. 6.5 ± 0.1 µm), beat cross frequency (33.9 ± 0.4 v. 33.43 ± 0.5 Hz), straightness (79.2 ± 0.7 v. 78.7 ± 0.6%), linearity (45.5 ± 0.4 v. 45.5 ± 0.7%), and viability (71.2 ± 0.8 v. 68.9 ± 0.8%) did not differ in both groups. The average percentage of intactness of sperm acrosome of high-fertile bulls was significantly higher (81.82 ± 0.87%) than that of low-fertility bulls (76.86 ± 0.87%). Furthermore, to assess the functionality of plasma membrane of sperm, we analyzed different stages of apoptotic-like events. The percentage of apoptotic sperm differed significantly between high-fertility (15.59 ± 0.75%) and low-fertility (25.94 ± 0.5%) bulls. The percentages of early necrotic, necrotic, and viable sperm did not differ in 2 groups. The DNA integrity in high-fertility (90.24 ± 0.94%) and low-fertility (88.37 ± 0.91%) bulls was not significantly different. In conclusion, the various parameters such as average path velocity, curvilinear velocity, straight linear velocity, and total motility; acrosomal integrity; and percentage of apoptotic sperm are useful for evaluating the semen quality of a bull to reduce the risk of using poor-fertility bulls in an AI program.


2013 ◽  
Vol 16 (4) ◽  
pp. 823-833 ◽  
Author(s):  
W. Kordan ◽  
L. Fraser ◽  
P. Wysocki ◽  
R. Strzeżek ◽  
M. Lecewicz ◽  
...  

Abstract Semen quality assessment methods are very important in predicting the fertilizing ability of persevered spermatozoa and to improve animal reproductive technology. This review discusses some of the current laboratory methods used for semen quality assessments, with references to their relevance in the evaluation of male fertility and semen preservation technologies. Semen quality assessment methods include sperm motility evaluations, analyzed with the computer-assisted semen analysis (CASA) system, and plasma membrane integrity evaluations using fluorescent stains, such as Hoechst 33258 (H33258), SYBR-14, propidium iodide (PI), ethidium homodimer (EthD) and 6-carboxyfluorescein diacetate (CFDA), and biochemical tests, such as the measurement of malondialdehyde (MDA) level. This review addresses the significance of specific fluorochromes and ATP measurements for the evaluation of the sperm mitochondrial status. Laboratory methods used for the evaluation of chromatin status, DNA integrity, and apoptotic changes in spermatozoa have been discussed. Special emphasis has been focused on the application of proteomic techniques, such as two-dimensional (2-D) gel electrophoresis and liquid chromatography mass spectrometry (LC-MS/MS), for the identification of the properties and functions of seminal plasma proteins in order to define their role in the fertilization-related processes.


2021 ◽  
Vol 33 (2) ◽  
pp. 159
Author(s):  
A. Vetokh ◽  
A. Tadzhieva ◽  
B. Iolchiev ◽  
N. Volkova ◽  
V. Bagirov

The results of AI depend on many factors, with the quality of semen being one of the most important. Not all male hybrids can meet the requirements for semen quality, because they often have reduced fertility following cryopreservation. Thus, it is necessary to improve semen processing before use in AI. The aim of the study was to evaluate the effectiveness of using the “swim-up” flotation method to improve sperm quality of hybrid males of the Ovis genus. Semen from interspecific hybrid rams (1/4 Argali×3/4 Romanov, n=15; 1/8 Argali×7/8 Romanov, n=15) was freshly obtained, frozen–thawed, and processed by the swim-up method. Evaluation of sperm motility was determined using computer-assisted semen analysis. Statistical analysis was performed using SPSS vs.15.0 (ANOVA and t-test; SPSS Inc.). Semen was collected during the breeding season (October–December) via artificial vagina. Assessment of acrosome integrity was determined using differential staining with a Diachem diff-quick kit (NPF ABRIS+). The degree of sperm DNA fragmentation was determined using the acridine-orange test. The sperm freezing/thawing cycle was accompanied by sperm damage and an increase in the proportion of immobile sperm from 10 to 58%, with non-progressive movement increasing from 9 to 19.3%. The number of spermatozoa with abnormal morphology doubled, and the DNA fragmentation index increased from 16 to 26%. Use of the swim-up procedure allowed us to sort progressively motile spermatozoa. The content of progressively motile spermatozoa in the samples obtained from the supernatant was 86%, which was 2.3 times higher than in frozen–thawed sperm (P≤0,01). The obtained results show the effective use of the swim-up procedure to determine the quality of semen in hybrid rams. These studies were carried out with financial support from the Russian Science Foundation, grant No. 18-16-00079 and the Ministry of Science and Higher Education of the Russian Federation.


2020 ◽  
Vol 63 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Yara Suliman ◽  
Frank Becker ◽  
Armin Tuchscherer ◽  
Klaus Wimmers

Abstract. Horses are seasonal breeders with a natural breeding season beginning in spring and extending through midsummer. In this study, quantitative and qualitative parameters of chilled stallion semen were compared between fertile and subfertile stallions and between the breeding and the non-breeding season. Semen quality parameters compared included ejaculate volume, sperm concentration, total sperm number, sperm morphology, and computer-assisted semen analysis (CASA)-derived sperm movement characteristics obtained from two groups of warmblood stallions (n=8; four fertile stallions and four subfertile stallions), which differ in the seasonal pregnancy rate 80 %–90 % (fertile) vs. 40 %–60 % (subfertile). A total of 64 ejaculates were collected from the stallions (n=8; four in the breeding season and four in the non-breeding season of each stallion). No significant differences in the semen quality parameters between the fertile and the subfertile stallions in the non-breeding season were observed. However, in the breeding season the proportion of morphologically normal sperm, total motility, progressive motility, average path velocity (VAP), and curvilinear velocity (VCL) were significantly higher in the fertile group (P<0.05) when compared with the subfertile group. In addition, a significant seasonal variation in the proportion of morphological normal sperm was found in the fertile group between the breeding and the non-breeding season (P<0.05). Moreover, significant seasonal variations (P<0.05) in CASA parameters of mean VAP, straight line velocity (VSL), and beat-cross frequency (BCF) were observed in the fertile and the subfertile stallions, which tended to be lower in the non-breeding season. In conclusion, differences between the fertile and the subfertile stallions were observed only in the breeding season, and a few of CASA-derived parameters seemed to be significantly lower during the non-breeding season in both the fertile and the subfertile stallions.


2017 ◽  
Vol 29 (1) ◽  
pp. 116
Author(s):  
M. W. Spilman ◽  
K. L. Burton ◽  
J. M. E. Statham

Routine assessment of bovine semen consists of a subjective assessment of morphology, motility and concentration. This subjective approach used during quality control at semen production centres (SPC) or investigations of poor reproductive performance in veterinary practice has been shown to be relatively inaccurate, imprecise, and operator dependent (Vincent, et al. 2012 Anim. Reprod. 9, 153–165). Assessment of frozen semen samples in a dedicated laboratory aimed to establish variations in multiple parameters associated with fertility using computer-assisted semen analysis and flow cytometry and evaluate their relationship to semen performance in the field. This has developed into a commercial service that is available to veterinarians and farmers across the United Kingdom. AI semen from 50 farms across Yorkshire, UK, that had been stored on farm was assessed for factors associated with fertility (motility, progressive motility, intact acrosome, viability, and polarised mitochondria). Data ranges and mean values for each parameter have been analysed. This analysis is ongoing as the dataset continues to expand and significance will be assessed. For frozen semen (n = 79), % viable sperm (max = 67.64, min = 0.00, mean = 43.44), % sperm with polarised mitochondria (max = 72.50, min = 0.26, mean = 38.56), % sperm with acrosome intact (max = 68.82, min = 0.06, mean = 35.29), % motile sperm (max = 66.90, min = 0.00, mean = 37.44) and % progressively motile sperm (max = 59.00, min = 0.00, mean = 26.11). 25% of the samples fell below the cut off for release of 30% motile sperm set by SPCs. For sexed AI semen (n = 9), % viable sperm (max = 66.31, min = 17.08, mean = 43.57), % polarised mitochondria (max = 26.74, min = 13.40, mean = 19.96), % intact acrosome (max = 52.62, min = 15.34, mean = 37.00), % motile (max = 38.00, min = 9.40, mean = 24.88) and % progressively motile (max = 22.80, min = 3.90, mean = 13.15). Objective semen analysis before beginning an embryo collection programme allows informed decisions to be made regarding semen choice and dosage depending on compensable v. non-compensable defects detected (Hudson et al. 2012 Dairy Herd Health 73–111; CABI Publishing). Use of semen that falls below the 30% cut off for SPCs is unlikely to perform as expected in the field (Phillips et al. 2004 Anim. Reprod. Sci. 80, 47–61). A European collaboration aims to establish correlations between semen quality parameters and fertility outcomes for UK cattle herds, providing unique data for the industry (Sellem et al. 2015 Theriogenology 84, 1447–1454.e5). These data should highlight to stakeholders in the industry how imperative optimal semen quality is and highlight the benefits to herd fertility and financial performance.


2016 ◽  
Vol 28 (2) ◽  
pp. 221
Author(s):  
D. Le Bourhis ◽  
S. Camugli ◽  
P. Salvetti ◽  
L. Schibler ◽  
E. Schmitt

SensiTemp, a new in vitro maturation (IMV) bull straw concept, presents the advantage of colour changing while the straw is thawed. The colour of frozen straws is blue and straws start to become white when the temperature reaches 33°C, with a complete change of colour at 37°C. The objective of this study is to assess sperm quality after thawing of semen frozen in SensiTemp from 2 bulls, by analysing, in experiment 1, sperm motility and membrane integrity using computer-assisted semen analysis (CASA) and flow cytometry (FC), and, in experiment 2, the in vitro embryo production (IVP) using IVP technologies [IVM, IVF, and in vitro culture (IVC)]. The ejaculates of 2 bulls, selected during preliminary experiments on high in vitro fertility, were harvested at CIA L’Aigle, France, and split ejaculates were frozen in experimental (SensiTemp) and conventional (control) straws. In experiment 1 after thawing semen from the 2 types of straws (5 pooled straws each; 2 replicates), motility was assessed using the IVOS CASA system (Hamilton Thorne Inc., Beverly, MA, USA) and membrane integrity was evaluated through FC with Cytosoft software (Millipore-Guava Technologies Inc., Hayward, CA, USA). In experiment 2, IVF was used to evaluate the non-toxicity of SensiTemp and control straws. Cumulus-oocyte complexes (COC; n = 1178; 4 replicates) collected from slaughterhouse ovaries were matured in IVM medium (TCM-199 with bicarbonate, Sigma-Aldrich, Saint Quentin Fallavier, France; 10 µg mL–1 FSH-LH, Reprobiol, Liège, Belgium; and 10% FCS, Thermo Fisher, Illkirch, France) for 22 h. After fertilization, presumptive zygotes of each group (SensiTemp and control for each bull) were cultured in synthetic oviduct fluid medium (SOF, Minitube, Tiefenbach, Germany) with 1% estrous cow serum (ECS) and 0.6% BSA (Sigma-Aldrich, France) up to 8 days. All cultures were conducted at 38.5C in 5% CO2, and 5% O2. The cleavage and blastocysts rates were evaluated on Days 3 and 7, respectively, for each group. Embryo quality was recorded on Day 7 according to the IETS evaluation. Data from each bull were analysed separately using the chi-squared test (P < 0.05). In experiment 1, neither sperm motility from bull 1 (61.2 and 60.5%) and bull 2 (66.2 and 66.5%) nor membrane integrity from bull 1 (58.6 and 52.2%) and bull 2 (61.0 and 61.9%) were different between SensiTemp and control, respectively. Results from experiment 2 showed no difference (P > 0.05) in cleavage rate between SensiTemp and control for the 2 bulls: 92.1 and 91.7% for bull 1 and 94.2 and 94.6% for bull 2 respectively. The blastocysts rate on Day 7 did not differ (P > 0.05) among groups (47.5, 47.1 and 51.3, 50.4% for SensiTemp and control bull 1 and bull 2, respectively) nor the quality of embryos retrieved in the different groups: 25.4, 23.3, and 30.8, 29.6% in grade 1 embryo for SensiTemp and control bull 1 and bull 2, respectively. Those results demonstrate, in vitro, that the new SensiTemp straws were non-toxic and did not affect the semen quality after thawing nor did the SensiTemp straws affect the ability of sperm cells to fertilize oocytes and produce 8-day-old embryos.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Agarwal ◽  
M K Panne. Selvam

Abstract Study question Can LensHooke X1 PRO semen analyzer be used to evaluate sperm morphology in men with infertility? Summary answer Morphology results generated by X1 PRO are highly reliable when normal sperm forms are ≥4% and therefore they can be reported in such cases . What is known already Most laboratories rely on manual evaluation of sperm morphology smears, which is a time-consuming procedure and its results are subjected to a relatively high variability. However, in recent years the computer-assisted semen analyzers are being increasingly used to evaluate sperm morphology. The X1 PRO semen quality analyzer was designed for in vitro diagnostic use to analyze sperm concentration, total, progressive and non-progressive motility as well as sperm morphology based on WHO 5th edition criteria. Evaluation of sperm morphology using X1 PRO based on AIOM (Artificial Intelligence Optical Microscopic)-based technology requires no fixation steps or staining unlike the manual method. Study design, size, duration This cross-sectional study used 31 semen samples from 8 normozoospermic healthy volunteers and 5 infertile men with a minimum abstinence period between 2 - 3 days. While the 8 healthy semen donors produced a total of 26 ejaculates, which were split into 88 aliquots, the 5 infertile patients produced 5 ejaculates that were split into 13 aliquots. Participants/materials, setting, methods A total of 101 aliquots were prepared from the native semen samples either by dilution or concentration using seminal plasma of the respective donors. Automated semen analysis was performed by the X1 PRO semen analyzer and the results of sperm morphology were compared with manual morphology results using Diff-Quik staining. Statistical analysis was carried out to calculate the positive predictive value (PPV) and negative predictive value (NPV) of X1 PRO semen analyzer. Main results and the role of chance The X1 PRO sperm morphology results show a weak non-significant (P = 0.2441) correlation (r = 0.119) with the manual results. However, X1 PRO demonstrated a high PPV (97.7%) and a low NPV (9.1%) for correct assessment of sperm morphology (≥4%) when compared to manual results. Due to its high PPV, laboratories can report the morphology results generated by X1 PRO in all such cases when normal sperm forms are ≥4%. However, a manual evaluation is necessary in patients with abnormal morphology (&lt;4%). Limitations, reasons for caution One of the limitation of this study is that X1 PRO morphology values did not correlate with manual results. The low NPV seen in our study is due to the inclusion of very few samples with abnormal sperm forms (&lt;4%) in the analysis. Wider implications of the findings: The X1 PRO’s combination of speed, ease of use, accuracy and portability makes it a good choice of device for small medical offices to large IVF centers. High PPV of X1 PRO allows it to correctly identify normal sperm forms for diagnostic use. Trial registration number 18–771


2020 ◽  
Vol 89 (3) ◽  
pp. 291-300
Author(s):  
Vladimír Piaček ◽  
Jan Zukal ◽  
Veronika Seidlová ◽  
Tomáš Heger ◽  
Monika Němcová ◽  
...  

Artificial insemination (AI) is the most frequently used assisted reproductive technique for captive propagation of rare avian species. As semen quality is critical for reproductive success, baseline data are needed for evaluating and selecting the best male bird donors. To this end, we used computer-assisted semen analysis to assess male eastern imperial eagles (n = 7), northern goshawks (n = 24) and peregrine falcons (n = 20). While imperial eagles and northern goshawks donate ejaculate voluntarily, peregrine falcons required cloacal massage. Eight peregrine falcon females were inseminated with semen from eight males, with fresh ejaculates (15 to 50 µl) applied to the pars uterina of the oviduct immediately after collection and examination. All females were inseminated within 2 h of laying an egg. A fertilization rate of 70% was achieved using this method. Minimum semen characteristics associated with egg fertilization included a semen concentration of 115.12 × 106/ml, 33.52% total motility, 1.92% spermatozoa with progressive motility and 0.17% with rapid motility. Comparative data on spermatozoa concentration and kinematics suggest that eastern imperial eagles concentrate on high quality semen investment at the start of the breeding season, northern goshawks compensate for a decrease in motility-associated parameters with increased semen concentration and peregrine falcons maintain semen production standards throughout the breeding season. Our data show that, in birds of prey, levels of egg fertilization following AI with fresh semen can be almost as successful as after natural mating.


2020 ◽  
Vol 4 (1) ◽  
pp. 293-298
Author(s):  
Tasha R Gruhot ◽  
Lea A Rempel ◽  
Brett R White ◽  
Benny E Mote

Abstract Semen quality has a dramatic impact on reproductive efficiency in the swine industry, influencing both conception rate and litter size. The objective of this study was to assess whether the presence of varicocele hinders semen quality in both thermoneutral and heat stress (HS) conditions. At approximately 6 mo of age, ultrasonography was used to measure left and right pampiniform plexus area in order to detect varicocele in maternal line boars at the University of Nebraska–Lincoln. Between 10 and 12 mo of age, semen was collected from each boar (n = 28) twice weekly. Boars were collected under thermoneutral conditions, were then heat stressed for 7 d to exacerbate any semen quality issues, and semen was collected post-HS for 6 wk. Sperm characteristics were determined by computer-assisted semen analysis. The presence of varicocele had a significant effect on sperm concentration (P = 0.04) and trended toward significance for mean sperm head area (P = 0.06) throughout the duration of the study. An interaction existed between varicocele and collection time point at weeks 2–5 post-HS for distal droplet percentage, suggesting that boars with varicocele were possibly more susceptible to heat-stress-induced semen quality issues than boars without varicocele. Moreover, semen quality was reduced in boars with versus without varicocele under both thermoneutral and HS conditions. Therefore, detection of varicocele by ultrasound could represent a potential marker of fertility in young boars or as a component trait in selection indices for fertility.


Sign in / Sign up

Export Citation Format

Share Document