scholarly journals Hybrid Bermudagrass and Tall Fescue Turfgrass Irrigation in Central California: II. Assessment of NDVI, CWSI, and Canopy Temperature Dynamics

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1733
Author(s):  
Amir Haghverdi ◽  
Maggie Reiter ◽  
Amninder Singh ◽  
Anish Sapkota

As the drought conditions persist in California and water continues to become less available, the development of methods to reduce water inputs is extremely important. Therefore, improving irrigation water use efficiency and developing water conservation strategies is crucial for maintaining urban green infrastructure. This two-year field irrigation project (2018–2019) focused on the application of optical and thermal remote sensing for turfgrass irrigation management in central California. We monitored the response of hybrid bermudagrass and tall fescue to varying irrigation treatments, including irrigation levels (percentages of reference evapotranspiration, ETo) and irrigation frequency. The ground-based remote sensing data included NDVI and canopy temperature, which was subsequently used to calculate the crop water stress index (CWSI). The measurements were done within two hours of solar noon under cloud-free conditions. The NDVI and canopy temperature data were collected 21 times in 2018 and 10 times in 2019. For the tall fescue, a strong relationship was observed between NDVI and visual rating (VR) values in both 2018 (r = 0.92) and 2019 (r = 0.83). For the hybrid bermudagrass, there was no correlation in 2018 and a moderate correlation (r = 0.72) in 2019. There was a moderate correlation of 0.64 and 0.88 in 2018 and 2019 between tall fescue canopy minus air temperature difference (dt) and vapor pressure deficit (VPD) for the lower CWSI baseline. The correlation between hybrid bermudagrass dt and VPD for the lower baseline was 0.69 in 2018 and 0.64 in 2019. Irrigation levels significantly impacted tall fescue canopy temperature but showed no significant effect on hybrid bermudagrass canopy temperature. For the same irrigation levels, increasing irrigation frequency slightly but consistently decreased canopy temperature without compromising the turfgrass quality. The empirical CWSI values violated the minimum expected value (of 0) 38% of the time. Our results suggest NDVI thresholds of 0.6–0.65 for tall fescue and 0.5 for hybrid bermudagrass to maintain acceptable quality in the central California region. Further investigation is needed to verify the thresholds obtained in this study, particularly for hybrid bermudagrass, as the recommendation is only based on 2019 data. No CWSI threshold was determined to maintain turf quality in the acceptable range because of the high variability of CWSI values over time and their low correlation with VR values.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1666
Author(s):  
Amir Haghverdi ◽  
Maggie Reiter ◽  
Anish Sapkota ◽  
Amninder Singh

Research-based information regarding the accuracy and reliability of smart irrigation controllers for autonomous landscape irrigation water conservation is limited in central California. A two-year irrigation research trial (2018–2019) was conducted in Parlier, California, to study the response of hybrid bermudagrass and tall fescue to varying irrigation scenarios (irrigation levels and irrigation frequency) autonomously applied using a Weathermatic ET-based smart controller. The response of turfgrass species to the irrigation treatments was visually assessed and rated. In addition, turfgrass water response functions (TWRFs) were developed to estimate the impact of irrigation scenarios on the turfgrass species based on long-term mean reference evapotranspiration (ETo) data. The Weathermatic controller overestimated ETo between 5and 7% in 2018 and between 5 and 8% in 2019 compared with California Irrigation Management Information System values. The controller closely followed programmed watering-days restrictions across treatments in 2018 and 2019 and adjusted the watering-days based on ETo demand when no restriction was applied. The low half distribution uniformity and precipitation rate of the irrigation system were 0.78 and 28 mm h−1, respectively. The catch-cans method substantially underestimated the precipitation rate of the irrigation system and caused over-irrigation by the smart controller. No water-saving and turfgrass quality improvement was observed owing to restricting irrigation frequency (watering days). For the hybrid bermudagrass, the visual rating (VR) for 101% ETo treatment stayed above the minimum acceptable value of six during the trial. For tall fescue, the 108% ETo level with 3 d wk−1 frequency kept the VR values in the acceptable range in 2018 except for a short period in mid-trial. The TWRF provided a good fit to experimental data with r values of 0.79 and 0.75 for tall fescue and hybrid bermudagrass, respectively. The estimated VR values by TWRF suggested 70–80% ETo as the minimum irrigation application to maintain the acceptable hybrid bermudagrass quality in central California during the high water demand months (i.e., May to August) based on long-term mean ETo data. The TWRF estimations suggest that 100% ETo would be sufficient to maintain the tall fescue quality for only 55 days. This might be an overestimation impacted by the relatively small tall fescue VR data in 2019 owing to minimal fertilizer applications and should be further investigated in the future.


2021 ◽  
Vol 4 ◽  
Author(s):  
Mahya Tavan ◽  
Benjamin Wee ◽  
Graham Brodie ◽  
Sigfredo Fuentes ◽  
Alexis Pang ◽  
...  

With water resources constantly becoming scarcer, and 70% of freshwater used for the agriculture sector, there is a growing need for innovative methods to increase water use efficiency (WUE) of food production systems and provide nutrient-dense food to an increasing population. Sensor technology has recently been introduced to the horticulture industry to increase resource use efficiency and minimize the environmental impacts of excessive water use. Identifying the effects of irrigation levels on crop performance is crucial for the success of sensor-based water management. This research aimed to optimize WUE in a soilless microgreen production system through identification of an optimal irrigation level using a sensor that could facilitate the development of a more efficient, low-cost automated irrigation system. A dielectric moisture sensor was implemented to monitor water levels at five irrigation setpoints: 7.5, 17.5, 25, 30, and 35 percent of the effective volume of the container (EVC) during a 14-day growth cycle. To validate the sensor performance, the same irrigation levels were applied to a parallel trial, without sensor, and water levels were monitored gravimetrically. Plant water status and stress reaction were evaluated using infrared thermal imaging, and the accumulation of osmolytes (proline) was determined. Results showed that, proline concentration, canopy temperature (Tc), canopy temperature depression (CTD), and crop water stress index (CWSI) increased at 7.5% EVC in both sensor-based and gravimetric treatments, and infrared index (Ig) and fresh yield decreased. The dielectric moisture sensor was effective in increasing WUE. The irrigation level of 17.5% EVC was found to be optimal. It resulted in a WUE of 88 g/L, an improvement of 30% over the gravimetric method at the same irrigation level. Furthermore, fresh yield increased by 11.5%. The outcome of this study could contribute to the automation of precision irrigation in hydroponically grown microgreens.


2013 ◽  
Vol 373-375 ◽  
pp. 996-999
Author(s):  
Yue Liu ◽  
Mei Xia Yang ◽  
Zhao Zhen Wang ◽  
Meng Li ◽  
Hui Chen

Precision irrigation is an important subsystem of precision agriculture, which is helpful to improve the water utilization of agricultural irrigation, so as to achieve the purpose of water conservation. For the issues of crop water shortage information timely and accurately, it designed and implemented a water shortage information detection system in the growth of crop based on canopy temperature and environmental factors. The system used the STM32 processor as the core, configured a variety of sensors, acquired and processed crop canopy temperature and various kinds of crops micro-environment information, obtained crop water shortage information through crop water stress index (CWSI), so as to guide the agricultural irrigation. The test proves that the system is working in good condition, can be effective for data acquisition and processing, so as to achieve the design requirements.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1298
Author(s):  
Saray Gutiérrez-Gordillo ◽  
Iván Francisco García-Tejero ◽  
Víctor Hugo Durán Zuazo ◽  
Amelia García Escalera ◽  
Fernando Ferrera Gil ◽  
...  

This work examines the use of thermal imaging to determine the crop water status in young almond trees under sustained deficit irrigation strategies (SDIs). The research was carried out during two seasons (2018–2019) in three cultivars (Prunus dulcis Mill., cvs. Guara, Lauranne, and Marta) subjected to three irrigation treatments: a full irrigation treatment (FI) at 100% of irrigation requirements (IR), and two SDIs that received 75% and 65% of the IR, respectively. Crop water monitoring was done by measurements of canopy temperature, leaf water potential (Ψleaf), and stomatal conductance. Thermal readings were used to define the non-water-stress baselines (NWSB) and water-stress baselines (WSB) for each treatment and cultivar. According to our findings, Ψleaf was the most responsive parameter to reflect differences in almond water status. In addition, NWSB and WSB allowed the determination of the crop water-stress index (CWSI) and the increment of canopy temperature (ITC) for each SDI treatment, obtaining threshold values of CWSI (0.12–0.15) and ITC (~1 °C) that would ensure maximum water savings by minimizing the effects on yield. The findings highlight the importance of determining the different NWSB and WSB for different almond cultivars and its potential use for proper irrigation scheduling.


2022 ◽  
Vol 43 (2) ◽  
pp. 491-508
Author(s):  
Maria Fgênia Saldanha Diógenes ◽  
◽  
Vander Mendonça ◽  
Luciana Freitas de Medeiros Mendonça ◽  
Elias Ariel de Moura ◽  
...  

The initial development of pitayas may be limited by a few factors, among them, water deficit. Agricultural hydrogels can be used as an alternative to enhance the retention and availability of water and nutrients in the soil. Therefore, this study aimed to evaluate the influence of irrigation frequency and hydrogel doses on the development of white pitaya (Hylocereus undatus) seedlings to establish a time interval in days between irrigations that provides better seedling development and determine the hydrogel dose that provides a reduction of water consumption without damaging seedling development. The experimental design consisted of randomized blocks in a 4 x 4 factorial arrangement, in which the treatments corresponded to 4 hydrogel doses (0, 2, 4, and 6 g/plant of Biogel Hidro Plus) incorporated into the substrate and four irrigation frequencies (1, 3, 5, and 7 days of interval). The biometric characteristics, photosynthetic pigments, and organic and inorganic solutes of the plants were evaluated after 120 days. The use of daily irrigation negatively influenced the growth and biomass accumulation of the aerial part of the seedlings and, consequently, provided the lowest values of cladodes of the pitaya seedlings. Pitaya seedlings had greater development when using an irrigation frequency of around 3 days. The application of 6 g/plant of hydrogel provided the highest averages for accumulation of dry biomass, photosynthetic pigments, and organic and inorganic solutes at irrigation levels of 3.6, 4, and about 3.8 days of intervals, respectively. Hydrogel incorporation allowed increasing the interval between irrigations by 1 day without damages to the seedling development.


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Davie Mayeso Kadyampakeni ◽  
Kelly T. Morgan ◽  
Mongi Zekri ◽  
Rhuanito Ferrarezi ◽  
Arnold Schumann ◽  
...  

Water is a limiting factor in Florida citrus production during the majority of the year because of the low water holding capacity of sandy soils resulting from low clay and the non-uniform distribution of the rainfall. In Florida, the major portion of rainfall comes in June through September. However, rainfall is scarce during the dry period from February through May, which coincides with the critical stages of bloom, leaf expansion, fruit set, and fruit enlargement. Irrigation is practiced to provide water when rainfall is not sufficient or timely to meet water needs. Proper irrigation scheduling is the application of water to crops only when needed and only in the amounts needed; that is, determining when to irrigate and how much water to apply. With proper irrigation scheduling, yield will not be limited by water stress. With citrus greening (HLB), irrigation scheduling is becoming more important and critical and growers cannot afford water stress or water excess. Any degree of water stress or imbalance can produce a deleterious change in physiological activity of growth and production of citrus trees.  The number of fruit, fruit size, and tree canopy are reduced and premature fruit drop is increased with water stress.  Extension growth in shoots and roots and leaf expansion are all negatively impacted by water stress. Other benefits of proper irrigation scheduling include reduced loss of nutrients from leaching as a result of excess water applications and reduced pollution of groundwater or surface waters from the leaching of nutrients. Recent studies have shown that for HLB-affected trees, irrigation frequency should increase and irrigation amounts should decrease to minimize water stress from drought stress or water excess, while ensuring optimal water availability in the rootzone at all times.


2021 ◽  
pp. 1-24
Author(s):  
Sobhan Mishra ◽  
Annie Maria Issac ◽  
Ronald Singh ◽  
Pokkuluri Venkat Raju ◽  
Venkateshwar Rao Vala

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 443
Author(s):  
Camille Rousset ◽  
Timothy J. Clough ◽  
Peter R. Grace ◽  
David W. Rowlings ◽  
Clemens Scheer

Pastures require year-round access to water and in some locations rely on irrigation during dry periods. Currently, there is a dearth of knowledge about the potential for using irrigation to mitigate N2O emissions. This study aimed to mitigate N2O losses from intensely managed pastures by adjusting irrigation frequency using soil gas diffusivity (Dp/Do) thresholds. Two irrigation regimes were compared; a standard irrigation treatment based on farmer practice (15 mm applied every 3 days) versus an optimised irrigation treatment where irrigation was applied when soil Dp/Do was ≈0.033 (equivalent to 50% of plant available water). Cow urine was applied at a rate of 700 kg N ha−1 to simulate a ruminant urine deposition event. In addition to N2O fluxes, soil moisture content was monitored hourly, Dp/Do was modelled, and pasture dry matter production was measured. Standard irrigation practices resulted in higher (p = 0.09) cumulative N2O emissions than the optimised irrigation treatment. Pasture growth rates under treatments did not differ. Denitrification during re-wetting events (irrigation and rain) contributed to soil N2O emissions. These results warrant further modelling of irrigation management as a mitigation option for N2O emissions from pasture soils, based on Dp/Do thresholds, rainfall, plant water demands and evapotranspiration.


2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


Sign in / Sign up

Export Citation Format

Share Document