scholarly journals Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.

2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1709 ◽  
Author(s):  
Maria Teresa Viggiani ◽  
Lorenzo Polimeno ◽  
Alfredo Di Leo ◽  
Michele Barone

Phytoestrogens are natural substances that have been extensively studied for their beneficial effect on human health. Herein, we analyzed the data of the literature on the role of phytoestrogens in the prevention of colorectal neoproliferative lesions (CNL). Both in vitro and in vivo studies suggest that the beneficial effects of phytoestrogens on CNL mainly depend on their ability to bind estrogen receptor beta (ERβ) in the intestinal mucosa and counter ER-alpha (ERα) activity. Epidemiological data demonstrate a correlation between the low prevalence of CNL in Eastern populations and the consumption of soy products (phytoestrogen-enriched diet). However, both observational and interventional studies have produced inconclusive results. In our opinion, these discrepancies depend on an inadequate evaluation of phytoestrogen intake (dietary questionnaires were not aimed at establishing phytoestrogen intake) and absorption (depending mainly on the intestinal microbiota of the analyzed subjects). For this reason, in the present review, we performed an overview of phytoestrogen dietary intake and metabolism to offer the reader the opportunity for a better interpretation of the literature. Future prospective trials focusing on the protective effect of phytoestrogens against CNL should take into account both their dietary intake and absorption, considering the effective role of the intestinal microbiota.


2011 ◽  
Vol 111 (1) ◽  
pp. 311-320 ◽  
Author(s):  
S. C. Newcomer ◽  
Dick H. J. Thijssen ◽  
D. J. Green

Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor “gap” exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
L. Pala ◽  
C. M. Rotella

The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, since these drugs not only improve glycemia with minimal risk of hypoglycemia, but also have other extraglycemic beneficial effects. These agents, which are effective in improving glucose control, could also have positive effects on the incidence of cardiovascular events. The aim of this review is to summarize the present literature about the role of dipeptidyl peptidase 4 (DPP4) in cardiovascular districts, not only strictly correlated to its effect on glucagon-like peptide-1 (GLP-1) circulating levels, but also to what is known about possible cardiovascular actions. Actually, DPP4 is known to be present in many cells and tissues and its effects go beyond purely metabolic aspects. Almost always the inhibition of DPP4 activity is associated with improved cardiovascular profile, but it has shown to possess antithrombotic properties and these different effects could be connected with a site and/or species specificity of DPP4. Certainly, DPP4 seems to exert many functions, both directly and indirectly, on cardiovascular districts, opening new possibilities of prevention and treatment of complications at this level, not only in patients affected by diabetes mellitus.


2021 ◽  
pp. 501-508
Author(s):  
Nikola Chomanicova ◽  
Andrea Gazova ◽  
Adriana Adamickova ◽  
Simona Valaskova ◽  
Jan Kyselovic

Metformin (MTF) is a widely used drug for the treatment of diabetes mellitus type 2 (DM2) and frequently used as an adjuvant therapy for polycystic ovarian syndrome, metabolic syndrome, and in some cases also tuberculosis. Its protective effect on the cardiovascular system has also been described. Recently, MTF was subjected to various analyzes and studies that showed its beneficial effects in cancer treatment such as reducing cancer cell proliferation, reducing tumor growth, inducing apoptosis, reducing cancer risk in diabetic patients, or reducing likelihood of relapse. One of the MTF’s mechanisms of action is the activation of adenosine-monophosphate-activated protein kinase (AMPK). Several studies have shown that AMPK/mammalian target of rapamycin (mTOR) pathway has anticancer effect in vivo and in vitro. The aim of this review is to present the anticancer activity of MTF highlighting the importance of the AMPK/mTOR pathway in the cancer process.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1739
Author(s):  
Aleix Martí Navia ◽  
Diego Dal Ben ◽  
Catia Lambertucci ◽  
Andrea Spinaci ◽  
Rosaria Volpini ◽  
...  

The pathological condition of neuroinflammation is caused by the activation of the neuroimmune cells astrocytes and microglia. The autacoid adenosine seems to be an important neuromodulator in this condition. Its main receptors involved in the neuroinflammation modulation are A1AR and A2AAR. Evidence suggests that A1AR activation produces a neuroprotective effect and A2AARs block prevents neuroinflammation. The aim of this work is to elucidate the effects of these receptors in neuroinflammation using the partial agonist 2′-dCCPA (2-chloro-N6-cyclopentyl-2′-deoxyadenosine) (C1 KiA1AR = 550 nM, KiA2AAR = 24,800 nM, and KiA3AR = 5560 nM, α = 0.70, EC50A1AR = 832 nM) and the newly synthesized in house compound 8-chloro-9-ethyl-2-phenethoxyadenine (C2 KiA2AAR = 0.75 nM; KiA1AR = 17 nM and KiA3AR = 227 nM, IC50A2AAR = 251 nM unpublished results). The experiments were performed in in vitro and in in vivo models of neuroinflammation. Results showed that C1 was able to prevent the inflammatory effect induced by cytokine cocktail (TNF-α, IL-1β, and IFN-γ) while C2 possess both anti-inflammatory and antioxidant properties, counteracting both neuroinflammation in mixed glial cells and in an animal model of neuroinflammation. In conclusion, C2 is a potential candidate for neuroinflammation therapy.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Peter Jenkinson

Abstract Since the mid-1970s, there have been many reports that purport to implicate aluminium in the aetiology of neurodegenerative disease. After several decades of research, the role of aluminium in such disease remains controversial and is not the subject of this review. However, if aluminium is implicated in such disease then it follows that there must be a toxicological mechanism or mode of action, and many researchers have investigated various potential mechanisms including the involvement of oxidative damage, cytotoxicity and genotoxicity. This paper reviews many of the publications of studies using various salts of aluminium and various genotoxicity end points, both in vitro and in vivo, with a focus on oxidative damage. The conclusion of this review is that the majority, if not all, of the publications that report positive results have serious technical flaws and/or implausible findings and consequently should contribute little or no weight to a weight of evidence (WoE) argument. There are many high-quality, Good Laboratory Practice (GLP)-compliant genotoxicity studies, that follow relevant OECD test guidelines and the European Chemicals Agency (ECHA) integrated mutagenicity testing strategy, on several salts of aluminium; all demonstrate clear negative results for both in vitro and in vivo genotoxicity. In addition, the claim for an oxidative mode of action for aluminium can be shown to be spurious. This review concludes that there are no reliable studies that demonstrate a potential for genotoxicity, or oxidative mode of action, for aluminium.


2021 ◽  
Author(s):  
Janik Kranz ◽  
Sebastian L. Wenski ◽  
Alexnder A. Dichter ◽  
Helge B. Bode ◽  
Kenan A. J. Bozhueyuek

Many clinically used natural products are produced by non-ribosomal peptide synthetases (NRPSs), which due to their modular nature should be accessible to modification and engineering approaches. While the adenylation domain (A) plays the key role in substrate recognition and activation, the condensation domain (C) which is responsible for substrate linkage and stereochemical filtering recently became the subject of debate - with its attributed role as a "gatekeeper" being called into question. Since we have thoroughly investigated different combinations of C-A didomains in a series of in vitro, in vivo, and in situ experiments suggesting an important role to the C-A interface for the activity and specificity of the downstream A domain and not the C domain as such, we would like to contribute to this discussion. The role of the C-A interface, termed 'extended gatekeeping', due to structural features of the C domains, can also be transferred to other NRPSs by engineering, was finally investigated and characterised in an in silico approach on 30 wild-type and recombinant C-A interfaces. With these data, we not only would like to offer a new perspective on the specificity of C domains, but also to revise our previously established NRPS engineering and construction rules.


Sign in / Sign up

Export Citation Format

Share Document