scholarly journals Preliminary Investigation of the Antibacterial Activity of Antitumor Drug 3-Amino-1,2,4-Benzotriazine-1,4-Dioxide (Tirapazamine) and its Derivatives

2020 ◽  
Vol 10 (12) ◽  
pp. 4062 ◽  
Author(s):  
Evelina Polmickaitė-Smirnova ◽  
Jonas Šarlauskas ◽  
Kastis Krikštopaitis ◽  
Živilė Lukšienė ◽  
Zita Staniulytė ◽  
...  

The antitumor drug 3-amino-1,2,4-benzotriazine-1,4-dioxide (tirapazamine, TPZ (1)) along with a number of newly synthesized tirapazamine derivatives (TPZs) bearing substitutions at the 3-amine position of TPZ (1) were estimated for their antibacterial activity against representative Gram-negative Escherichia coli (ATCC 25922) and Salmonella enterica (SL 5676), as well as Gram-positive Staphylococcus aureus (ATCC 25923) bacterial strains. Their activities in terms of minimum inhibitory concentrations (MICs) varied in the range of 1.1 µM (0.25 µg/mL)–413 µM (128 µg/mL). Amongst the most potent derivatives (1–6), acetyl- and methoxycarbonyl-substituted TPZs (2 and 4) were the strongest agents, which exhibited approximately 4–30 fold greater activities compared to those of TPZ (1) along with the reference drugs chloramphenicol (CAM) and nitrofurantoin (NFT). The inhibitory activities of the compounds were highly impacted by their structural features. No reliable relationships were established between activities and the electron-accepting potencies of the whole set of studied compounds, while the activities of TPZ drug (1) and the structurally uniform set of molecules (2–6) were found to increase with an increase in their electron-accepting potencies obtained by means of density functional theory (DFT) computation. A greater steric, lipophilic and polar nature of the substituents led to a lower activity of the compounds. The combined antibacterial in vitro trial gave clear evidence that TPZs coupled with the commonly utilized antibiotics ciprofloxacin (Cipro) and nitrofurantoin (NFT) could generate enhanced (suggestive of partial and virtually complete synergistic) and additive effects. The strongest effects were defined for TPZs–NFT combinations, which resulted in a notable reduction in the MICs of di-N-oxides. These preliminary findings suggest that the synthesized novel di-N-oxides might be used as sole agents or applied as antibiotic complements.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1008
Author(s):  
Doaa Domyati ◽  
Sami A. Zabin ◽  
Ahmed A. Elhenawy ◽  
Mohamed Abdelbaset

The synthesis of mixed-ligand complexes is considered an important strategy for developing new metal complexes of enhanced biological activity. This paper presents the synthesis, characterization, in vitro antimicrobial assessment, and theoretical molecular docking evaluation for synthesized oxidovanadium (V) complexes. The proposed structures of the synthesized compounds were proved using elemental and different spectroscopic analysis. The antimicrobial tests showed moderate activity of the compounds against the Gram-positive bacterial strains and the fungal yeast, whereas no activity was observed against the Gram-negative bacterial strains. The performance of density functional theory (DFT) was conducted to study the interaction mode of the targeted compounds with the biological system. Calculating the quantitative structure-activity relationship (QSPR) was performed depending on optimization geometries, frontier molecular orbitals (FMOs), and chemical reactivities for synthesized compounds. The molecular electrostatic potentials (MEPs) that were plotted link the interaction manner of synthesized compounds with the receptor. The molecular docking evaluation revealed that the examined compounds may possess potential antibacterial activity.


2021 ◽  
Vol 46 (2) ◽  
pp. 26-35
Author(s):  
José Alberto Paris Junior ◽  
Ana Júlia Salvador Rocchi ◽  
Bruno Torquato Biagioni ◽  
Maurício Cavicchioli ◽  
Rachel Temperani Amaral Machado ◽  
...  

A silver(I) complex with succinic acid in the form of succinate is presented. Chemical characterization confirms the molecular composition Ag2C4H4O4 for the complex. Infrared spectra suggest a bidentate coordination of both carboxylate groups of succinates to the two Ag(I) ions. Density functional theory (DFT) studies were used in the structures of succinic acid and Ag(I) succinate complex with coordination formula [Ag2(C4H4O4)] in order to optimize them to their minimum energy. The studies confirmed that each carboxylate group of the succinate anion is coordinated to one silver atom by the two oxygen in a bidentate mode and the bond lengths O···Ag theoretically determined range from 2.325 to 2.338 Å. The complex [Ag2(C4H4O4)] showed in vitro antibacterial activity against the bacterial strains of Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa complex. Anti-Mycobacterium tuberculosis analyses were also performed and the [Ag2(C4H4O4)] complex was shown to be active over M. tuberculosis H37Rv strain with MIC90 of 23.94 μg mL-1 while succinic acid itself showed a value higher than 25.00 μg mL-1.


2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2021 ◽  
pp. 1-8
Author(s):  
Azadeh Jafari Rad ◽  
Maryam Abbasi ◽  
Bahareh Zohrevand

This work was performed regarding the importance of iron (Fe) chelation for biological systems. This goal was investigated by assistance of a model of thiocytosine (TC) for participating in Fe-chelation processes. First, formations of tautomeric conformations were investigated to explore existence of possible structures of TC. Next, Fe-chelation processes were examined for all four obtained tautomers of TC. The results indicated that thiol tautomers could be seen at higher stability than thio tautomers, in which one of such thiol tautomers yielded the strongest Fe-chelation process to build FeTC3 model. As a consequence, parallel to the results of original TC tautomers, Fe-chelated models were found to be achievable for meaningful chelation processes or sensing the existence of Fe in media. Examining molecular orbital features could help for sensing purposes. The results of this work were obtained by performing density functional theory (DFT) calculations proposing TC compounds suitable for Fe-chelation purposes.


2010 ◽  
Vol 76 (15) ◽  
pp. 4969-4976 ◽  
Author(s):  
Kerstin Engelhardt ◽  
Kristin F. Degnes ◽  
Michael Kemmler ◽  
Harald Bredholt ◽  
Espen Fj�rvik ◽  
...  

ABSTRACT Twenty-seven marine sediment- and sponge-derived actinomycetes with a preference for or dependence on seawater for growth were classified at the genus level using molecular taxonomy. Their potential to produce bioactive secondary metabolites was analyzed by PCR screening for genes involved in polyketide and nonribosomal peptide antibiotic synthesis. Using microwell cultures, conditions for the production of antibacterial and antifungal compounds were identified for 15 of the 27 isolates subjected to this screening. Nine of the 15 active extracts were also active against multiresistant Gram-positive bacterial and/or fungal indicator organisms, including vancomycin-resistant Enterococcus faecium and multidrug-resistant Candida albicans. Activity-guided fractionation of fermentation extracts of isolate TFS65-07, showing strong antibacterial activity and classified as a Nocardiopsis species, allowed the identification and purification of the active compound. Structure elucidation revealed this compound to be a new thiopeptide antibiotic with a rare aminoacetone moiety. The in vitro antibacterial activity of this thiopeptide, designated TP-1161, against a panel of bacterial strains was determined.


Sign in / Sign up

Export Citation Format

Share Document