scholarly journals In Silico-Enhanced Treatment and Rehabilitation Planning for Patients with Musculoskeletal Disorders: Can Musculoskeletal Modelling and Dynamic Simulations Really Impact Current Clinical Practice?

2020 ◽  
Vol 10 (20) ◽  
pp. 7255
Author(s):  
Bryce A Killen ◽  
Antoine Falisse ◽  
Friedl De Groote ◽  
Ilse Jonkers

Over the past decades, the use of computational physics-based models representative of the musculoskeletal (MSK) system has become increasingly popular in many fields of clinically driven research, locomotor rehabilitation in particular. These models have been applied to various functional impairments given their ability to estimate parameters which cannot be readily measured in vivo but are of interest to clinicians. The use of MSK modelling and simulations allows analysis of relevant MSK biomarkers such as muscle and joint contact loading at a number of different stages in the clinical treatment pathway in order to benefit patient functional outcome. Applications of these methods include optimisation of rehabilitation programs, patient stratification, disease characterisation, surgical pre-planning, and assistive device and exoskeleton design and optimisation. This review provides an overview of current approaches, the components of standard MSK models, applications, limitations, and assumptions of these modelling and simulation methods, and finally proposes a future direction.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 914
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Roberto Francini ◽  
Paolo Prosposito ◽  
...  

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.


2021 ◽  
Vol 22 (11) ◽  
pp. 5871
Author(s):  
Almerinda Di Venere ◽  
Eleonora Nicolai ◽  
Velia Minicozzi ◽  
Anna Maria Caccuri ◽  
Luisa Di Paola ◽  
...  

TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroto Nakajima ◽  
Atsushi Miyashita ◽  
Hiroshi Hamamoto ◽  
Kazuhisa Sekimizu

AbstractIn this study, we investigated a new application of bubble-eye goldfish (commercially available strain with large bubble-shaped eye sacs) for immunological studies in fishes utilizing the technical advantage of examining immune cells in the eye sac fluid ex vivo without sacrificing animals. As known in many aquatic species, the common goldfish strain showed an increased infection sensitivity at elevated temperature, which we demonstrate may be due to an immune impairment using the bubble-eye goldfish model. Injection of heat-killed bacterial cells into the eye sac resulted in an inflammatory symptom (surface reddening) and increased gene expression of pro-inflammatory cytokines observed in vivo, and elevated rearing temperature suppressed the induction of pro-inflammatory gene expressions. We further conducted ex vivo experiments using the immune cells harvested from the eye sac and found that the induced expression of pro-inflammatory cytokines was suppressed when we increased the temperature of ex vivo culture, suggesting that the temperature response of the eye-sac immune cells is a cell autonomous function. These results indicate that the bubble-eye goldfish is a suitable model for ex vivo investigation of fish immune cells and that the temperature-induced infection susceptibility in the goldfish may be due to functional impairments of immune cells.


2013 ◽  
Vol 39 (4) ◽  
pp. 978-987 ◽  
Author(s):  
Emily J. McWalter ◽  
Colm M. O'Kane ◽  
David P. FitzPatrick ◽  
David R. Wilson

2014 ◽  
Vol 306 (6) ◽  
pp. H807-H815 ◽  
Author(s):  
David Barefield ◽  
Mohit Kumar ◽  
Pieter P. de Tombe ◽  
Sakthivel Sadayappan

The etiology of hypertrophic cardiomyopathy (HCM) has been ascribed to mutations in genes encoding sarcomere proteins. In particular, mutations in MYBPC3, a gene which encodes cardiac myosin binding protein-C (cMyBP-C), have been implicated in over one third of HCM cases. Of these mutations, 70% are predicted to result in C′-truncated protein products, which are undetectable in tissue samples. Heterozygous carriers of these truncation mutations exhibit varying penetrance of HCM, with symptoms often occurring later in life. We hypothesize that heterozygous carriers of MYBPC3 mutations, while seemingly asymptomatic, have subtle functional impairments that precede the development of overt HCM. This study compared heterozygous (+/t) knock-in MYBPC3 truncation mutation mice with wild-type (+/+) littermates to determine whether functional alterations occur at the whole-heart or single-cell level before the onset of hypertrophy. The +/t mice show ∼40% reduction in MYBPC3 transcription, but no changes in cMyBP-C level, phosphorylation status, or cardiac morphology. Nonetheless, +/t mice show significantly decreased maximal force development at sarcomere lengths of 1.9 μm (+/t 68.5 ± 4.1 mN/mm2 vs. +/+ 82.2 ± 3.2) and 2.3 μm (+/t 79.2 ± 3.1 mN/mm2 vs. +/+ 95.5 ± 2.4). In addition, heterozygous mice show significant reductions in vivo in the early/after (E/A) (+/t 1.74 ± 0.12 vs. +/+ 2.58 ± 0.43) and E′/A′ (+/t 1.18 ± 0.05 vs. +/+ 1.52 ± 0.15) ratios, indicating diastolic dysfunction. These results suggest that seemingly asymptomatic heterozygous MYBPC3 carriers do suffer impairments that may presage the onset of HCM.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Koichi Kobayashi ◽  
Ali Hosseini ◽  
Makoto Sakamoto ◽  
Wei Qi ◽  
Harry E. Rubash ◽  
...  

While various factors have been assumed to affect knee joint biomechanics, few data have been reported on the function of the extensor mechanism in deep flexion of the knee. This study analyzed the patellofemoral joint contact kinematics and the ratio of the quadriceps and patellar tendon forces in living subjects when they performed a single leg lunge up to 150 deg of flexion. The data revealed that in the proximal-distal direction, the patellofemoral articular contact points were in the central one-third of the patellar cartilage. Beyond 90 deg of flexion, the contact points moved towards the medial-lateral edges of the patellar surface. At low flexion angles, the patellar tendon and quadriceps force ratio was approximately 1.0 but reduced to about 0.7 after 60 deg of knee flexion, implying that the patella tendon carries lower loads than the quadriceps. These data may be valuable for improvement of contemporary surgical treatments of diseased knees that are aimed to achieve deep knee flexion.


2015 ◽  
Vol 89 (18) ◽  
pp. 9639-9652 ◽  
Author(s):  
Mako Toyoda ◽  
Yoko Ogata ◽  
Macdonald Mahiti ◽  
Yosuke Maeda ◽  
Xiaomei T. Kuang ◽  
...  

ABSTRACTHIV-1 Nef downregulates the viral entry receptor CD4 as well as the coreceptors CCR5 and CXCR4 from the surface of HIV-infected cells, and this leads to promotion of viral replication through superinfection resistance and other mechanisms. Nef sequence motifs that modulate these functions have been identified viain vitromutagenesis with laboratory HIV-1 strains. However, it remains unclear whether the same motifs contribute to Nef activity in patient-derived sequences and whether these motifs may differ in Nef sequences isolated at different infection stages and/or from patients with different disease phenotypes. Here,nefclones from 45 elite controllers (EC), 46 chronic progressors (CP), and 43 acute progressors (AP) were examined for their CD4, CCR5, and CXCR4 downregulation functions. Nef clones from EC exhibited statistically significantly impaired CD4 and CCR5 downregulation ability and modestly impaired CXCR4 downregulation activity compared to those from CP and AP. Nef's ability to downregulate CD4 and CCR5 correlated positively in all cohorts, suggesting that they are functionally linkedin vivo. Moreover, impairments in Nef's receptor downregulation functions increased the susceptibility of Nef-expressing cells to HIV-1 infection. Mutagenesis studies on three functionally impaired EC Nef clones revealed that multiple residues, including those at novel sites, were involved in the alteration of Nef functions and steady-state protein levels. Specifically, polymorphisms at highly conserved tryptophan residues (e.g., Trp-57 and Trp-183) and immune escape-associated sites were responsible for reduced Nef functions in these clones. Our results suggest that the functional modulation of primary Nef sequences is mediated by complex polymorphism networks.IMPORTANCEHIV-1 Nef, a key factor for viral pathogenesis, downregulates functionally important molecules from the surface of infected cells, including the viral entry receptor CD4 and coreceptors CCR5 and CXCR4. This activity enhances viral replication by protecting infected cells from cytotoxicity associated with superinfection and may also serve as an immune evasion strategy. However, how these activities are maintained under selective pressurein vivoremains elusive. We addressed this question by analyzing functions of primary Nef clones isolated from patients at various infection stages and with different disease phenotypes, including elite controllers, who spontaneously control HIV-1 viremia to undetectable levels. The results indicated that downregulation of HIV-1 entry receptors, particularly CCR5, is impaired in Nef clones from elite controllers. These functional impairments were driven by rare Nef polymorphisms and adaptations associated with cellular immune responses, underscoring the complex molecular pathways responsible for maintaining and attenuating viral protein functionin vivo.


Author(s):  
Hannah J. Lundberg ◽  
Markus A. Wimmer

Detailed knowledge of in vivo knee contact forces and the contribution from muscles, ligaments, and other soft-tissues to knee joint function are essential for evaluating total knee replacement (TKR) designs. We have recently developed a mathematical model for calculating knee joint contact forces using parametric methodology (Lundberg et al., 2009). The numerical model calculates a “solution space” of three-dimensional contact forces for both the medial and lateral compartments of the tibial plateau. The solution spaces are physiologically meaningful, and represent the result of balancing the external moments and forces by different strategies.


2002 ◽  
Vol 195 (9) ◽  
pp. 1089-1101 ◽  
Author(s):  
Stephanie Reignat ◽  
George J.M. Webster ◽  
David Brown ◽  
Graham S. Ogg ◽  
Abigail King ◽  
...  

Deletion, anergy, and a spectrum of functional impairments can affect virus-specific CD8 cells in chronic viral infections. Here we characterize a low frequency population of CD8 cells present in chronic hepatitis B virus (HBV) infection which survive in the face of a high quantity of viral antigen. Although they do not appear to exert immunological pressure in vivo, these CD8 cells are not classically “tolerant” since they proliferate, lyse, and produce antiviral cytokines in vitro. They are characterized by altered HLA/peptide tetramer reactivity, which is not explained by TCR down-regulation or reduced functional avidity and which can be reversed with repetitive stimulation. CD8 cells with altered tetramer binding appear to have a specificity restricted to envelope antigen and not to other HBV antigens, suggesting that mechanisms of CD8 cell dysfunction are differentially regulated according to the antigenic form and presentation of individual viral antigens.


Sign in / Sign up

Export Citation Format

Share Document