scholarly journals Automatic Generation of N-Bar Planar Linkages Containing Sliders

2021 ◽  
Vol 11 (8) ◽  
pp. 3546
Author(s):  
Mahmoud Helal ◽  
Jong Wan Hu ◽  
Hasan Eleashy

In this work, a generalized algorithm is introduced to generate all alternatives of planar N-bar kinematic chains (KCs) with simple joints containing sliders. A simple graphical technique is introduced to enumerate all available N-bar chains with prismatic (P) joints. Then, a new topological Loop Code (TLC) is presented to detect isomorphic chains during the enumeration process in addition to detecting rejected KCs. A visual C++ code is developed for automatic enumeration and detection of rejected KCs and isomorphic KCs. Examples of 6, 8, and 10-bar KCs are presented to illustrate algorithm procedures. As a result, 21, 16, and 1350 KCs have P-joints for Stephenson, Watt, and 8-bar chains, respectively. Also, 308 KCs are obtained for a 10-bar KC with up to 3 sliders.

Author(s):  
Nadim Diab

This paper presents a new graphical technique to locate the secondary instantaneous centers of zero velocity (ICs) for one-degree-of-freedom (1-DOF) kinematically indeterminate planar mechanisms. The proposed approach is based on transforming the 1-DOF mechanism into a 2-DOF counterpart by converting any ground-pivoted ternary link into two ground-pivoted binary links. Fixing each of these two new binary links, one at a time, results in two different 1-DOF mechanisms where the intersection of the loci of their instantaneous centers will determine the location of the desired instantaneous center for the original 1-DOF mechanism. This single and consistent approach proved to be successful in locating the ICs of various mechanisms reported in the literature that required different techniques to reach the same results obtained herein.


2014 ◽  
Vol 611 ◽  
pp. 40-45
Author(s):  
Darina Hroncová ◽  
Jozef Filas

The paper describes an algorithm for automatic compilation of equations of motion. Lagrange equations of the second kind and the transformation matrices of basic movements are used by this algorithm. This approach is useful for computer simulation of open kinematic chains with any number of degrees of freedom as well as any combination of bonds.


Author(s):  
Gim Song Soh ◽  
Nina Robson

In this paper, we consider the dimensional synthesis of one degree-of-freedom multi-loop planar linkages such that they do not violate normal direction and second order curvature constraints imposed by contact with objects. Our goal is in developing minimally actuated multi-loop mechanical devices for human-robot interaction, that is, devices whose tasks will happen in a human environment. Currently no systematic method exists for the kinematic synthesis of robotic fingers that incorporate multi-loop kinematic structure with second order task constraints, related to curvature. We show how to use these contact and curvature effects to formulate the synthesis equations for the design of a planar one-degree-of-freedom six-bar linkage. An example for the design of a finger that maintains a specified contact with an object, for an anthropomorphic task, is presented at the end of the paper. It is important to note, that the theoretical foundation presented in this paper, assists in solving some of the open problems of this field, providing preliminary results on the synthesis of kinematic chains with multi-loop topology and the use of novel task specifications that incorporate curvature constraints with future applications in grasping and object manipulation.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: Part I-modular structural analysis and modular kinematic analysis; Part II-modular dynamic analysis, modular structural synthesis and modular kinematic synthesis. This paper is the second part.


Author(s):  
Shen Hui-Ping ◽  
Yang Ting-Li

Abstract This paper presents a simple numerical evaluation method for solving all possible assembly configurations on an any position of the input link of some complex planar linkages according to the structural theory of mechanism based on the ordered Single-Opened-Chains (S.O.Cs). This method can simultaneously checks on whether the input link is a crank of the linkage. This paper also discovers that full-cycle ratability (F.C.R) of a linkage depends on not only the length of links of the linkage but also the different assembly configurations of the linkage after analysis of assemblage configurations. The illustration for solution and analysis of assembly configurations of a complex planar linkage is given in detail. This paper provides the actual assembly of linkages and the optimization of structure synthesis of linkages with some important information.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao

Abstract This paper presents a new viewpoint about structural composition of spatial kinematic chains; single-opened chains are regarded as basic structural units of mechanisms. The constraint characteristics (the constraint factors, Δj) of single-opened chains and the constraint characteristics (the coupled degree, κ and the κ-algorithm) of mechanical networks are presented. Thus a kinematic chain with ν independent loops is regarded to be composed of one basic link and ν single-opened chains in regular sequence. The above mentioned topological characteristics are used for setting up a new unified model for structural analysis and synthesis, kinematics and dynamics of spatial mechanisms.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao

Abstract Based on the single-opened chain constraints and the network topological characteristics of mechanisms, a powerful new method for structural synthesis of spatial kinematic chain with plane and nonplane linear graphs has been developed. This permits the development of a highly efficient and completely automatic program for the computer-generated enumeration of structural types of mechanisms. The method is illustrated by applying to the case of kinematic chains with up to six independent loops on a personal computer.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In the systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: part I — modular structural analysis and modular kinematic analysis; part II — modular dynamics analysis, modular structural synthesis and modular kinematic synthesis. This paper is the first part.


Author(s):  
W Li ◽  
Z Wang ◽  
H Li

This paper presents for the first time a method for the automatic generation of independent and peripheral loops of planar kinematic chains. In order to implement this method, three laws are considered and some new concepts, for instance same-position link, similar loop, loop-link vector and loop-joint vector, are defined. By using structural matrices of planar kinematic chains, independent loops are generated in the order from those with small length to those with large length. Next, one peripheral loop with the maximum length is generated. Finally a loop-link matrix and a loop-joint matrix are obtained to express all independent loops and the peripheral loop in a planar kinematic chain.


Sign in / Sign up

Export Citation Format

Share Document