scholarly journals First Report and 3D Reconstruction of a Presumptive Microscopic Liver Lipoma in a Black Barbel (Barbus balcanicus) from the River Bregalnica in the Republic of North Macedonia

2021 ◽  
Vol 11 (18) ◽  
pp. 8392
Author(s):  
Katerina Rebok ◽  
Maja Jordanova ◽  
Júlia Azevedo ◽  
Eduardo Rocha

A lipoma is a benign tumour of mature adipocytes which may appear in various species, including marine and freshwater fish. It usually occurs in isolated locations, such as a superficial or deep mass, mainly in the skin and seldom in other organs. In non-mammalian vertebrates, there is no agreed minimal size for the mass to be considered a lipoma. This study histologically describes a case proposed to be a microlipoma in the liver of Barbus balcanicus. The structure was an oval-shaped mass of well-differentiated adipocytes, surrounded by hepatic parenchyma. The adipocyte cluster did not contact with major vascular or biliary tracts, the liver capsule, or the hilum. The cell mass reached a maximal linear length and width of ~0.5 mm and ~0.4 mm. A three-dimensional and software-assisted reconstruction of the adipocytic mass showed that it had the shape of a flattened prolate spheroid (~0.01 mm3). Given the histological criteria currently used in the literature, we consider the mass as a lipoma, or, better, a microlipoma because it was tiny. We interpret this structure as an early growing lipoma. This work is the second description of a liver lipoma in a fish to the best of our knowledge.

Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


2007 ◽  
Vol 3 (1) ◽  
pp. 89-113
Author(s):  
Zoltán Gillay ◽  
László Fenyvesi

There was a method developed that generates the three-dimensional model of not axisymmetric produce, based on an arbitrary number of photos. The model can serve as a basis for calculating the surface area and the volume of produce. The efficiency of the reconstruction was tested on bell peppers and artificial shapes. In case of bell peppers 3-dimensional reconstruction was created from 4 images rotated in 45° angle intervals. The surface area and the volume were estimated on the basis of the reconstructed area. Furthermore, a new and simple reference method was devised to give precise results for the surface area of bell pepper. The results show that this 3D reconstruction-based surface area and volume calculation method is suitable to determine the surface area and volume of definite bell peppers with an acceptable error.


2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


2021 ◽  
Vol 11 (1) ◽  
pp. 409
Author(s):  
Jaejoong Lee ◽  
Chiho Lee ◽  
Hyeon Hwi Lee ◽  
Kyung Tae Park ◽  
Hyun-Kyo Jung ◽  
...  

A new line-of-sight (LOS) decision algorithm applicable to simulation of electronic warfare (EW) is developed. For accurate simulation, the digital terrain elevation data (DTED) of the region to be analyzed must be reflected in the simulation, and millions of datasets are necessary in the EW environment. In order to obtain real-time results in such an environment, a technology that determines line-of-sight (LOS) quickly and accurately is very important. In this paper, a novel algorithm is introduced for determining LOS that can be applied in an EW environment with three-dimensional (3D) DTED. The proposed method shows superior performance as compared with the simplest point-to-point distance calculation method and it is also 50% faster than the conventional interpolation method. The DTED used in this paper is the data applied as level 0 for the Republic of Korea, and the decision of the LOS at approximately 1.8 million locations viewed by a reconnaissance plane flying 10 km above the ground is determined within 0.026 s.


2021 ◽  
Vol 11 (8) ◽  
pp. 3635
Author(s):  
Ioannis Liritzis ◽  
Pantelis Volonakis ◽  
Spyros Vosinakis

In the field of cultural heritage, three-dimensional (3D) reconstruction of monuments is a usual activity for many professionals. The aim in this paper focuses on the new technology educational application combining science, history, and archaeology. Being involved in almost all stages of implementation steps and assessing the level of participation, university students use tools of computer gaming platform and participate in ways of planning the virtual environment which improves their education through e-Learning. The virtual 3D environment is made with different imaging methods (helium-filled balloon, Structure for motion, 3D repository models) and a developmental plan has been designed for use in many future applications. Digital tools were used with 3D reconstructed buildings from the museum archive to Unity 3D for the design. The pilot study of Information Technology work has been employed to introduce cultural heritage and archaeology to university syllabuses. It included students with a questionnaire which has been evaluated accordingly. As a result, the university students were inspired to immerse themselves into the virtual lab, aiming to increasing the level of interaction. The results show a satisfactory learning outcome by an easy to use and real 3D environment, a step forward to fill in needs of contemporary online sustainable learning demands.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Javier Caviedes-Bucheli ◽  
Nestor Rios-Osorio ◽  
Diana Usme ◽  
Cristian Jimenez ◽  
Adriana Pinzon ◽  
...  

Abstract Background The purpose of this study was to evaluate the changes in canal volume after root canal preparation in vivo with 3 different single-file techniques (Reciproc-Blue®, WaveOne-Gold® and XP-EndoShaper®), with a new method using CBCT and 3D reconstruction. Methods In this prospective study, thirty human lower premolars from healthy patients were used, in which extraction was indicated for orthodontic reasons. All the teeth used were caries- and restoration-free with complete root development, without signs of periodontal disease or traumatic occlusion, and with only one straight canal (up to 25º curvature). Teeth were randomly divided into three different groups: Reciproc-Blue, WaveOne-Gold and XP-EndoShaper. CBCT scans before root canal preparation were used to create a 3D reconstruction with RHINOCEROS 5.0 software to assess the initial canal volume, and then compared with 3D reconstructions after canal preparation to measure the increase in canal volume. Student’s t test for paired data were used to determine statistically significant differences between the before and after canal volumes. Anova test was used to determine statistically significant differences in the percentage of canal volume increase between the groups and Tukey's post-hoc test were used to paired comparison. Results Reciproc-Blue showed the higher increase in canal volume, followed by WaveOne-Gold and XP-EndoShaper (p = 0.003). XP-EndoShaper did not show a statistically significant increase in canal volume after root canal preparation (p = 0.06). Conclusion With this model, Reciproc-Blue showed higher increase in root canal volume, followed by WaveOne-Gold, while XP-EndoShaper did not significantly increase root canal volume during preparation.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4001 ◽  
Author(s):  
Shuhe Chang ◽  
Haoyu Zhang ◽  
Haiying Xu ◽  
Xinghua Sang ◽  
Li Wang ◽  
...  

In the process of electron beam freeform fabrication (EBF3), due to the continuous change of thermal conditions and variability in wire feeding in the deposition process, geometric deviations are generated in the deposition of each layer. In order to prevent the layer-by-layer accumulation of the deviation, it is necessary to perform online geometry measurement for each deposition layer, based on which the error compensation can be done for the previous deposition layer in the next deposition layer. However, the traditional three-dimensional reconstruction method that employs structured laser cannot meet the requirements of long-term stable operation in the manufacturing process of EBF3. Therefore, this paper proposes a method to measure the deposit surfaces based on the position information of electron beam speckle, in which an electron beam is used to bombard the surface of the deposit to generate the speckle. Based on the structured information of the electron beam in the vacuum chamber, the three-dimensional reconstruction of the surface of the deposited parts is realized without need of additional structured laser sensor. In order to improve the detection accuracy, the detection error is theoretically analyzed and compensated. The absolute error after compensation is smaller than 0.1 mm, and the precision can reach 0.1%, which satisfies the requirements of 3D reconstruction of the deposited parts. An online measurement system is built for the surface of deposited parts in the process of electron beam freeform fabrication, which realizes the online 3D reconstruction of the surface of the deposited layer. In addition, in order to improve the detection stability of the whole system, the image processing algorithm suitable for this scene is designed. The reliability and speed of the algorithm are improved by ROI extraction, threshold segmentation, and expansion corrosion. In addition, the speckle size information can also reflect the thermal conditions of the surface of the deposited parts. Hence, it can be used for online detection of defects such as infusion and voids.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yasumitsu Masuda ◽  
Ryo Hasebe ◽  
Yasushi Kuromi ◽  
Masayoshi Kobayashi ◽  
Kanako Urataki ◽  
...  

Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.


Author(s):  
S. Zhang ◽  
C. Liu ◽  
N. Haala

Abstract. Lightweight unmanned aerial vehicles (UAVs) have been widely used in image acquisition for 3D reconstruction. With the availability of compact and high-end imaging sensors, UAVs can be the platform for precise photogrammetric reconstruction. However, the completeness and precision of complex environment or targets highly rely on the flight planning due to the self-occlusion of structures. Flight paths with back-and-forth pattern and nadir views will result in incompleteness and precision loss of the 3D reconstruction. Therefore, multiple views from different directions are preferred in order to eliminate the occlusion. We propose a 3D path planning method for multirotor UAVs aiming at capturing images for complete and precise photogrammetric 3D reconstructions. This method takes the coarse model from an initial flight as prior knowledge and estimates its completeness and precision. New imaging positions are then planned taking photogrammetric constraints into account. The real-world experiment on a ship lock shows that the proposed method can acquire a more complete result with similar precision compared with an existing 3D planning method.


2021 ◽  
Vol 11 (7) ◽  
pp. 1957-1962
Author(s):  
Xuefei Deng ◽  
Yu Liu ◽  
Qingling Meng ◽  
Danning Cao ◽  
Quan Bao ◽  
...  

Objective: The mortality of rebleeding after ruptured intracranial aneurysms was more than 40%. It is essential to identify the intracranial artery in sectional anatomy. However, it is difficult for students to understand the intracranial artery in the section. Therefore, the purpose of this study is to explore the application effect of three-dimensional (3D) reconstruction and numerical simulation of intracranial aneurysm for sectional anatomy based on computed tomography angiography (CTA). Method: Sixty students in medical imaging specialty of our university were divided into two groups. The control group was taught with conventional sectional anatomy and CT images, while the observation group was taught with 3D reconstruction and numerical simulation of intracranial aneurysm. The teaching characteristics and teaching effects were analyzed and compared between the two groups. Result: The 3D reconstruction can accurately express the size, direction, and adjacent relationship of aneurysms. Through rotation of the 3D image, students can easily understand the name and location of cerebral arteries. Combined with the function of 3D positioning, each blood vessel can automatically and accurately locate in the transverse, coronal, and sagittal plane. Abnormal wall shear stress was easily found in the intersection of cerebral artery circle, which was the physiological basis for the occurrence of aneurysms. There was a high shear zone in the root of an aneurysm, which was the physiological factor of rupture. The scores of sectional specimen identification, drawing examination, and theoretical assessment in the observation group were significantly higher than those in the control group (P < 0.05). Conclusion: The 3D reconstruction and numerical simulation can directly display the 3D morphological and physiological characteristics of intracranial aneurysms, which is convenient for students to understand and memorize. It can reach a good teaching effect in sectional anatomy.


Sign in / Sign up

Export Citation Format

Share Document