scholarly journals Chalcones and Flavanones Bearing Hydroxyl and/or Methoxyl Groups: Synthesis and Biological Assessments

2019 ◽  
Vol 9 (14) ◽  
pp. 2846 ◽  
Author(s):  
Gonçalo P. Rosa ◽  
Ana M. L. Seca ◽  
Maria do Carmo Barreto ◽  
Artur M. S. Silva ◽  
Diana C. G. A. Pinto

Chalcones and flavanones are isomeric structures and also classes of natural products, belonging to the flavonoid family. Moreover, their wide range of biological activities makes them key scaffolds for the synthesis of new and more efficient drugs. In this work, the synthesis of hydroxy and/or methoxychalcones was studied using less common bases, such as sodium hydride (NaH) and lithium bis(trimethylsilyl)amide (LiHMDS), in the aldol condensation. The results show that the use of NaH was more effective for the synthesis of 2′-hydroxychalcone derivatives, while LiHMDS led to the synthesis of polyhydroxylated chalcones in a one-pot process. During this study, it was also possible to establish the conditions that favor their isomerization into flavanones, allowing at the same time the synthesis of hydroxy and/or methoxyflavanones. The chalcones and flavanones obtained were evaluated to disclose their antioxidant, anticholinesterasic, antibacterial and antitumor activities. 2′,4′,4-Trihydroxychalcone was the most active compound in terms of antioxidant, anti-butyrylcholinesterase (IC50 26.55 ± 0.55 μg/mL, similar to control drug donepezil, IC50 28.94 ± 1.76 μg/mL) and antimicrobial activity. 4′,7-Dihydroxyflavanone presented dual inhibition, that is, the ability to inhibit both cholinesterases. 4′-Hydroxy-5,7-dimethoxyflavanone and 2′-hydroxy-4-methoxychalcone were the compounds with the best antitumor activity. The substitution pattern and the biological assay results allowed the establishment of some structure/activity relationships.

2021 ◽  
Vol 18 ◽  
Author(s):  
Nitishkumar S. Kaminwar ◽  
Sunil U. Tekale ◽  
Srinivas L. Nakkalwar ◽  
Rajendra P. Pawar

: Synthesis of isoxazole structural heterocyclic compounds is important due to their wide range of biological activities. In the present article, we report a convenient and easy method for the synthesis of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-ones by the one-pot three-component reaction of aldehydes, β-keto ester, and hydroxylamine hydrochloride cat-alyzed by sulfated tin oxide as a heterogeneous catalyst.


2019 ◽  
Vol 17 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Elvira Rifovna Shakurova ◽  
Darina Alexandrovna Pozdnyakova ◽  
Elena Valeryevna Tretyakova ◽  
Lyudmila Vyacheslavovna Parfenova

Background: A wide range of biological activity, relatively low toxicity and multiple pharmacological effects of triterpenoids are major advantages of these compounds in the prevention and treatment of various diseases. They include the lupane- type triterpenoids that proved to be a promising platform for the synthesis of analogs with a wide range of biological activities, including anti-inflammatory, antitumor, antiparasitic and antiviral properties. The main disadvantage complicating the use of all known derivatives of lupane acids in medical practice is low bioavailability associated with poor solubility in biologic fluids, limiting their effective interaction with the biological targets. Objective: The objective of this study is the synthesis of new amphiphilic betulin derivatives on the base of pyridinium salts with antifungal and antibacterial activity. Methods: In this study we have developed an effective one-pot method for the preparation of new quaternized pyridine derivatives 4-6 of the betulinic series based on the reaction of the initial triterpenes 1-3 with the Tempo+Br3 - reagent in the pyridine. The synthesized and initial compounds were tested for their antimicrobial and antifungal activity. Results: The data presented in this document indicate that all synthesized compounds 4-6 exhibited high activity against both gram-positive Staphylococcus aureus bacteria and gram-negative Pseudomonas aeruginosa strains, as well as Candida albicans and Cryptococcus neoformans fungi with the >90% coverage of the inhibition zone. The best result in a series of compounds 4-6 was found for the derivative 6 at the minimum inhibitory concentration of 1 µg/ml against S. aureus bacteria, C. albicans and C. neoformans fungi at the concentration of 8 µg/ml. Conclusion: Thus, we have demonstrated the first example of the pyridine quaternization using the betulin triterpenoids as the lipophilic substrates and Tempo+Br3 - cation. The obtained quaternized pyridine analogs of betulin triterpenes showed high antibacterial and antifungal activity in comparison with the initial compounds.


Various vinylsulfones and vinylsulfonamides have a wide range of biological activities (mainly, inhibition of different types of enzymes) and are frequently used in synthetic organic chemistry (as active dienophiles, Michael acceptors and, generally, active agents in 1,4‑addition and electrocyclization reactions). However, despite numerous synthesized substances of this type, the synthetic protocols for the obtaining of the low molecular weight representatives of these compounds – 1‑(methylsulfonyl)-1-propene and N,N‑dimethyl-1‑propene-1-sulfonamide – seem to be still little known. In the present work we report a simple, efficient and general protocol for the dehydrative synthesis of 1‑(methylsulfonyl)-1‑propene and N,N‑dimethyl-1‑propene-1‑sulfonamide starting from corresponding 1-(methylsulfonyl)-2-propanol and N,N‑dimethyl-2‑hydroxypropanesulfonamide, respectively, using MeSO2Cl/organic base system basing on the preliminary experiment of 2‑(4‑bromophenyl)-N,N‑dimethylethenesulfonamide synthesis from 2‑(4‑bromophenyl)-2‑hydroxy-N,N-dimethylethanesulfonamide. The latter in its turn has been obtained starting from N,N‑dimethylmethanesulfonamide by lithiation with n-BuLi, subsequent action of 4‑bromobenzaldehyde and further workup. The applied protocol of vinyl derivatives synthesis allows to avoid isolation of intermediate mesyl derivatives, consisting of one-pot formation of leaving group and its elimination. Accordingly to coupling constants in 1H NMR spectra, synthesized N,N‑dimethyl-1-propene-1‑sulfonamide exists as mixture of E- and Z-isomers (in the ratio 88:12), while isolated 1‑(methylsulfonyl)-1‑propene and 2-(4-bromophenyl)-N,N‑dimethylethenesulfonamide are the most stable E‑isomers. The structures of the synthesized compounds are confirmed by the methods of 1H NMR-spectroscopy and mass-spectrometry.


2019 ◽  
Vol 16 (32) ◽  
pp. 820-832
Author(s):  
A. L. MOURA ◽  
J. F. SILVA ◽  
J. J. R. DE FREITAS ◽  
J. C. R. FREITAS ◽  
J. R. DE FREITAS FILHO

1,2,4-oxadiazoles are compounds that have attracted the attention of many researchers due to their wide range of biological activities, for example, anti-inflammatory, antimicrobial, antitumor etc. The syntheses are based mostly on the use of amidoximes and acylating agents as the initial reactants. This work aims to describe a one-pot reaction for the synthesis of 1,2,4-oxadiazols, mediated by microwave irradiation, employing home-use microwave oven, in the discipline of heterocyclic Chemistry in the postgraduate. The methodology consisted of the reaction of nitriles, hydroxylamine hydrochloride, potassium carbonate and different esters to obtain 1,2,4-oxadiazole. The reactions include two sequential procedures: base-promoted intermolecular addition of hydroxylamine to nitrile to lead to amidoxime, then treatment of the amidoxime with esther to form 1,2,4-oxadiazoles in good yields. This method represents a direct and simple protocol for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles. It was initially discussed with the students the chemistry of the oxadiazoles, one-pot reactions and green chemistry through atheoretical-expository-dialogue strategy. In the course of the didactic intervention the students, through a thematic seminary, presented the results of the analysis of the spectra from the different techniques used. With the skills acquired from completing this laboratory work, the students become well-prepared to perform spectroscopic analyzes in subsequent experiments encountered in the organic chemistry laboratory.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1842 ◽  
Author(s):  
Yue-Xian Jin ◽  
Lei-Ling Shi ◽  
Da-Peng Zhang ◽  
Hong-Yan Wei ◽  
Yuan Si ◽  
...  

Natural daphnane diterpenoids, mainly distributed in plants of the Thymelaeaceae and Euphorbiaceae families, usually include a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while some special types have a characteristic orthoester motif triaxially connectedat C-9, C-13, and C-14. The daphnane-type diterpenoids can be classified into five types: 6-epoxy daphnane diterpenoids, resiniferonoids, genkwanines, 1-alkyldaphnanes and rediocides, based on the oxygen-containing functions at rings B and C, as well as the substitution pattern of ring A. Up to now, nearly 200 daphnane-type diterpenoids have been isolated and elucidated from the Thymelaeaceae and Euphorbiaceae families. In-vitro and in-vivo experiments of these compounds have shown that they possess a wide range of biological activities, including anti-HIV, anti-cancer, anti-leukemic, neurotrophic, pesticidal and cytotoxic effects. A comprehensive account of the structural diversity is given in this review, along with the cytotoxic activities of daphnane-type diterpenoids, up to April 2019.


Molbank ◽  
10.3390/m1193 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1193
Author(s):  
Angelica Artasensi ◽  
Giovanna Baron ◽  
Giulio Vistoli ◽  
Giancarlo Aldini ◽  
Laura Fumagalli

Over the years secondary metabolites have been considered as lead molecules both in their natural form and as templates for medicinal chemistry. Some secondary metabolites such as polyphenols and flavan-3-ols exert beneficial effects after a modification by the microbiota. Synthetic precursors of some of these modified compounds, in turn, carried a γ-alkylidenebutenolide moiety which characterizes a large class of bioactive natural products endowed with a wide range of biological activities. For these reasons stereoselective preparation of γ-alkylidenebutenolide continues to be an important issue for organic chemists. Our objective is to synthetize the novel compound (Z)-5-(3′,4′-bis(benzyloxy)benzylidene)furan-2(5H)-one in a stereocontrolled-one-pot reaction. The product was obtained in good yield. Furthermore, the theoretical investigation of the transition states suggests a new procedure to achieve Z-isomer of β-unsubstituted γ-alkylidenebutenolide.


Author(s):  
Vishal Sharma ◽  
Rina Das ◽  
Dinesh Kumar Mehta ◽  
Diksha Sharma ◽  
Ram Kumar Sahu

: Globally, cancer is considered as the major leading cause in decreasing the patient health care system of human beings. The growing threat from drug-resistant cancers makes heterocyclic moieties as an urgent need to develop more successful candidates for anti-cancer therapy. In view of outstanding pharmacological activities Quinolone and its derivatives have attracted more attention towards drug designing and biological evaluation in the search of new drug molecules. The inspired researchers attempted efforts in order to discover quinolone based analogs due to its wide range of biological activities. Due to immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from quinolones and all the reported molecules have shown constructive anticancer activity. Some of the synthetic protocol like, one pot synthesis, post-Ugi-transformation, catalysed based synthesis, enzyme-based synthesis and nano-catalyst based synthetic procedures are also discussed as recent advancement in production of quinolone derivatives. In this review, recent synthetic approaches in the medicinal chemistry of quinolones and potent quinolone derivatives on the basis of structural activity relationship are outlined. Moreover, their major methods and modifications are discussed.


2020 ◽  
Vol 24 (14) ◽  
pp. 1643-1662
Author(s):  
Ankita Chaudhary

Kojic acid, one of the most widespread 3-hydroxypyran-4-one derivatives, displays a wide range of biological activities and found application in food as well as cosmetics industry. The synthesis of kojic acid derivatives has provoked great interest as an easily available and biologically active precursor among organic and medicinal researchers. Multicomponent reactions, involving three or more reactants in one-pot thereby resulting in a structure with functional diversity are efficient methods for the promotion of green chemistry in the context of modern drug discovery. They offer several advantages over conventional stepwise protocols like simplicity, efficiency, selectivity, convergence and atom economy. This review aims to highlight the versatility of kojic acid as an important synthon in multicomponent reactions for the construction of various biologically relevant compounds such as pyrano[3,2‐ b]chromenediones, pyrano[3,2-b]pyrans, pyrano[2′,3′:5,6]pyrano[2,3‑b]pyridines, spiro[indoline-3,4’-pyrano[3, 2-b]pyrans, 2-substituted kojic acid conjugates, etc.


2021 ◽  
Vol 18 ◽  
Author(s):  
Monika Verma ◽  
Ajay Thakur ◽  
Renu Sharma ◽  
Ruchi Bharti

: The history of tri-substituted methanes (TRSMs) in chemical industries is much older. Tri-substituted methanes were previously used as dyes in the chemical industries. Still, there is a significant surge in researchers' interest in them due to their wide range of bioactivities. Tri-substituted methane derivatives show a wide range of biological activities like anti-tumor, antimicrobial, antibiofilm, antioxidant, anti-inflammatory, anti-arthritic activities. Due to the wide range of medicinal applications shown by tri-substituted methanes, most of the methodologies reported in the literature for the synthesis of TRSMs are focused on the one-pot method. This review explored the recently reported one-pot processes for synthesizing tri-substituted methanes and their various medicinal applications. Based on the substitution attached to the -CH carbon, this review categorizes them into two major classes: (I) symmetrical and (II) unsymmetrical trisubstituted methanes. In addition, this review gives an insight into the growing opportunities for the construction of trisubstituted scaffolds via one-pot methodologies. To the best of our knowledge, no one has yet reported a review on the one-pot synthesis of TRSMs. Therefore, here we present a brief literature review of the synthesis of both symmetrical and unsymmetrical TRSMs covering various one-pot methodologies along with their medicinal applications.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


Sign in / Sign up

Export Citation Format

Share Document