scholarly journals Impact of Isolation Procedures on the Development of a Preclinical Synovial Fibroblasts/Macrophages in an In Vitro Model of Osteoarthritis

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 459
Author(s):  
Cristina Manferdini ◽  
Yasmin Saleh ◽  
Paolo Dolzani ◽  
Elena Gabusi ◽  
Diego Trucco ◽  
...  

There is a lack ofin vitromodels able to properly represent osteoarthritis (OA) synovial tissue (ST). We aimed to characterize OA ST and to investigate whether a mechanical or enzymatic digestion procedures influence synovial cell functional heterogeneity in vitro. Procedures using mechanical nondigested fragments (NDF), synovial digested fragments (SDF), and filtrated synovial digested cells (SDC) were compared. An immunophenotypic profile was performed to distinguish synovial fibroblasts (CD55, CD73, CD90, CD106), macrophages (CD14, CD68), M1-like (CD80, CD86), and M2-like (CD163, CD206) synovial macrophages. Pro-inflammatory (interleukin 6 IL6), tumor necrosis factor alpha (TNFα), chemokine C-C motif ligand 3 (CCL3/MIP1α), C-X- motif chemokine ligand 10 (CXCL10/IP10) and anti-inflammatory (interleukin 10 (IL10)), transforming growth factor beta 1 (TGFβ1), C-C motif chemokine ligand 18 (CCL18) cytokines were evaluated. CD68 and CD163 markers were higher in NDF and SDF compared to the SDC procedure, while CD80, CD86, and CD206 were higher only in NDF compared to the SDC procedure. Synovial fibroblast markers showed similar percentages. TNFα, CCL3/MIP1α, CXCL10/IP10, and CCL18 were higher in NDF compared to SDC, but not compared to SDF. IL10 and TGFβ1 were higher in NDF than SDC at the molecular level, while IL6 did not show differences among procedures. We demonstrated that NDF isolation procedures better preserved the heterogeneity of specific OA synovial populations (fibroblasts, macrophages), fostering their use for testing new cell therapies or drugs for OA, reducing or avoiding the use of animal models.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Małgorzata Chmielewska-Krzesińska ◽  
Krzysztof Wąsowicz

Abstract Introduction Ozone is not harmful itself; however, it directly oxidises biomolecules and produces radical-dependent cytotoxicity. Exposure to ozone is by inhalation and therefore the lungs develop the main anti-inflammatory response, while ozone has an indirect impact on the other organs. This study investigated the local and systemic effects of the ozone-associated inflammatory response. Material and Methods Three groups each of 5 Wistar Han rats aged 6 months were exposed for 2h to airborne ozone at 0.5 ppm and a fourth identical group were unexposed controls. Sacrifice was at 3h after exposure for control rats and one experimental group and at 24 h and 48 h for the others. Lung and liver samples were evaluated for changes in expression of transforming growth factor beta 1, anti-inflammatory interleukin 10, pro-inflammatory tumour necrosis factor alpha and interleukin 1 beta and two nuclear factor kappa-light-chain-enhancer of B cells subunit genes. Total RNA was isolated from the samples in spin columns and cDNA was synthesised in an RT-PCR. Expression levels were compared to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and analysed statistically. Results All variables changed non-linearly over time comparing experimental groups to the control. Conspicuous expression changes in the subunit genes and cytokines were observed in both evaluated organs. Conclusion Locally and systemically, inflammation responses to ozone inhalation include regulation of certain genes’ expression. The mechanisms are unalike in lungs and liver but ozone exerts a similar effect in both organs. A broader range of variables influential on ozone response should be studied in the future.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5016-5026 ◽  
Author(s):  
SE Jacobsen ◽  
OP Veiby ◽  
J Myklebust ◽  
C Okkenhaug ◽  
SD Lyman

The recently cloned flt3 ligand (FL) stimulates the growth of primitive hematopoietic progenitor cells through synergistic interactions with multiple other cytokines. The present study is the first demonstrating cytokines capable of inhibiting FL-stimulated hematopoietic cell growth. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta l) potently inhibited the clonal growth of murine Lin-Sca-l+ bone marrow progenitors stimulated by FL alone or in combination with granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), interleukin (IL)-3, IL-6, IL-11, or IL-12. TGF-beta 1 inhibited more than 96% of the myeloid colony formation in response to these cytokine combinations, whereas TNF-alpha reduced the number of colonies by 58% to 96% depending on the cytokine by which FL was combined. In addition, both TNF-alpha and TGF-beta 1 inhibited more than 90% of B220+ cell production from B220- bone marrow cells stimulated by FL + IL-7. The effects of TNF-alpha and TGF-beta 1 appeared to be due to a direct effect and on the early progenitors because the inhibition was observed at the single cell level, and because delayed addition of the two inhibitors for only 48 hours dramatically reduced their inhibitory effects. A neutralizing anti-TGF- beta antibody showed the presence of endogenous TGF-beta in the cultures and potently enhanced the ability of FL to stimulate progenitor cell growth in the absence of other cytokines. Agonistic antibodies specifically activating the p75 TNF receptors were more efficient than wild type murine TNF-alpha in signaling growth inhibition of Lin-Sca-l+ progenitor cells, whereas the p55 agonist had less effect than murine TNF-alpha. Finally, TGF-beta increased the number of FL + IL-11-stimulated Lin-Sca-1+ cells in the G1 phase of the cell cycle with 76%, whereas TNF-alpha only had a marginal effect on cell cycle distribution. Thus, TGF-beta, TNF-alpha, and p75 TNF receptor agonists are potent direct inhibitors of FL-stimulated progenitor cell growth in vitro.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4151-4156 ◽  
Author(s):  
S Jiang ◽  
JD Levine ◽  
Y Fu ◽  
B Deng ◽  
R London ◽  
...  

Primary human bone marrow megakaryocytes were studied for their ability to express and release cytokines potentially relevant to their proliferation and/or differentiation. The purity of the bone marrow megakaryocytes was assessed by morphologic and immunocytochemical criteria. Unstimulated marrow megakaryocytes constitutively expressed genes for interleukin-1 beta (IL-1 beta), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha), by the polymerase chain reaction (PCR) and Northern blot analysis. At the protein level, megakaryocytes secreted significant amounts of IL-1 beta (53.6 +/- 3.6 pg/mL), IL-6 (57.6 +/- 15.6 pg/mL), and GM-CSF (24 +/- 4 pg/mL) but not TNF-alpha. Exposure of human marrow megakaryocytes to IL-1 beta increased the levels of IL-6 (87.3 +/- 2.3 pg/mL) detected in the culture supernatants. Transforming growth factor- beta was also able to stimulate IL-6, IL-1 beta, and GM-CSF secretion, but was less potent than stimulation with phorbol-12-myristate-13- acetate (PMA). The secreted cytokines acted additively to maintain and increase the number of colony-forming unit-megakaryocytes colonies (approximately 35%). These studies demonstrate the production of multiple cytokines by isolated human bone marrow megakaryocytes constitutively or stimulated in vitro. The capacity of human megakaryocytes to synthesize several cytokines known to modulate hematopoietic cells supports the concept that there may be an autocrine mechanism operative in the regulation of megakaryocytopoiesis.


2008 ◽  
Vol 76 (9) ◽  
pp. 4322-4331 ◽  
Author(s):  
Abraham Guerrero ◽  
Bettina C. Fries

ABSTRACT Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10−/−) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10−/− mice survived longer than wild-type mice, whereas MC-infected IL-10−/− mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10−/− and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10−/− and wild-type mice. In contrast, both SM-infected IL-10−/− and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10−/− and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10−/− mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 624-630 ◽  
Author(s):  
Y Sonoda ◽  
Y Kuzuyama ◽  
S Tanaka ◽  
S Yokota ◽  
T Maekawa ◽  
...  

Abstract We studied the effects of recombinant human interleukin-4 (rhIL-4) on megakaryocyte colony formation from enriched hematopoietic progenitors. IL-4 strongly inhibited pure and mixed megakaryocyte colony formation in a dose-dependent manner. Formation of erythroid bursts, eosinophil colonies, and erythrocyte-containing mixed colonies was not affected by the addition of IL-4 as reported previously (Sonoda Y, et al; Blood 75:1615, 1990). Delayed addition experiments suggested that IL-4 acts on an early stage of proliferation of megakaryocyte progenitors. Neutralizing antibodies (antisera) prepared against transforming growth factor beta, tumor necrosis factor alpha, interferon alpha (IFN alpha), and IFN gamma did not affect the inhibitory effects of IL-4 on pure and mixed megakaryocyte colony formation. In addition, the inhibitory effects of IL-4 was also seen in serum-free cultures and in cultures containing highly enriched CD34+, HLA-DR+ cells as a target population. These results indicate that IL-4 may function as one of the negative regulators in human megakaryocytopoiesis in vitro.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2678-2683 ◽  
Author(s):  
P Wang ◽  
P Wu ◽  
JC Anthes ◽  
MI Siegel ◽  
RW Egan ◽  
...  

Abstract In highly purified human polymorphonuclear leukocyte (PMN) preparations containing less than 0.1% contaminating monocytes, significant amounts of interleukin-8 (IL-8) and small amounts of IL-1 alpha, IL-1 beta, and tumor necrosis factor-alpha (TNF-alpha) were produced by lipopolysaccharide (LPS) stimulation. Contrary to published reports, IL- 6 production could not be detected. IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-8, and TNF-alpha in LPS-stimulated PMNs, as it did in human blood mononuclear cell (MNC) preparations enriched in monocytes. Subsequent investigation of cytokine synthesis inhibitory effect of IL-10 on PMNs was focused on IL-8. IL-10 inhibited IL-8 synthesis in a dose-dependent manner and, in this regard, it was more potent than IL-4 and transforming growth factor-beta 1 (TGF-B1). In both MNCs and PMNs, degradation of LPS-induced IL-8 mRNA was enhanced by IL-10. Furthermore, as determined by nuclear run-on assays, IL-10 inhibited LPS-induced transcription of IL-8 gene in MNCs. However, in PMNs, run-on assays could not reliably detect IL-8 gene transcription. These results provide the first evidence that the human peripheral neutrophil is a target for inhibition of cytokine synthesis by IL-10, and that IL-10 acts by affecting both gene transcription and mRNA stability.


1991 ◽  
Vol 174 (6) ◽  
pp. 1549-1555 ◽  
Author(s):  
C Bogdan ◽  
Y Vodovotz ◽  
C Nathan

Recombinant mouse interleukin 10 (IL-10) was exceedingly potent at suppressing the ability of mouse peritoneal macrophages (m phi) to release tumor necrosis factor alpha (TNF-alpha). The IC50 of IL-10 for the suppression of TNF-alpha release induced by 0.5 microgram/ml lipopolysaccharide was 0.04 +/- 0.03 U/ml, with as little as 1 U/ml suppressing TNF-alpha production by a factor of 21.4 +/- 2.5. At 10 U/ml, IL-10 markedly suppressed m phi release of reactive oxygen intermediates (ROI) (IC50 3.7 +/- 1.8 U/ml), but only weakly inhibited m phi release of reactive nitrogen intermediates (RNI). Since TNF-alpha is a T cell growth and differentiation factor, whereas ROI and RNI are known to inhibit lymphocyte function, it is possible that m phi exposed to low concentrations of IL-10 suppress lymphocytes. m phi deactivated by higher concentrations of IL-10 might be permissive for the growth of microbial pathogens and tumor cells, as TNF-alpha, ROI, and RNI are major antimicrobial and tumoricidal products of m phi. IL-10's effects on m phi overlap with but are distinct from the effects of the two previously described cytokines that suppress the function of mouse m phi, transforming growth factor beta and macrophage deactivation factor. Based on results with neutralizing antibodies, all three m phi suppressor factors appear to act independently.


2010 ◽  
Vol 78 (4) ◽  
pp. 1601-1609 ◽  
Author(s):  
Débora L. Oliveira ◽  
Célio G. Freire-de-Lima ◽  
Joshua D. Nosanchuk ◽  
Arturo Casadevall ◽  
Marcio L. Rodrigues ◽  
...  

ABSTRACT Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of fungi with host cells remains unknown. In this report, we demonstrate by fluorescence microscopy that mammalian macrophages can incorporate extracellular vesicles produced by C. neoformans. Incubation of cryptococcal vesicles with murine macrophages resulted in increased levels of extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). Vesicle preparations also resulted in a dose-dependent stimulation of nitric oxide production by phagocytes, suggesting that vesicle components stimulate macrophages to produce antimicrobial compounds. Treated macrophages were more effective at killing C. neoformans yeast. Our results indicate that the extracellular vesicles of C. neoformans can stimulate macrophage function, apparently activating these phagocytic cells to enhance their antimicrobial activity. These results establish that cryptococcal vesicles are biologically active.


2005 ◽  
Vol 79 (23) ◽  
pp. 14526-14535 ◽  
Author(s):  
Carlos F. Narváez ◽  
Juana Angel ◽  
Manuel A. Franco

ABSTRACT We have previously shown that very few rotavirus (RV)-specific T cells that secrete gamma interferon circulate in recently infected and seropositive adults and children. Here, we have studied the interaction of RV with myeloid immature (IDC) and mature dendritic cells (MDC) in vitro. RV did not induce cell death of IDC or MDC and induced maturation of between 12 and 48% of IDC. Nonetheless, RV did not inhibit the maturation of IDC or change the expression of maturation markers on MDC. After treatment with RV, few IDC expressed the nonstructural viral protein NSP4. In contrast, a discrete productive viral infection was shown in MDC of a subset of volunteers, and between 3 and 46% of these cells expressed NSP4. RV-treated IDC secreted interleukin 6 (IL-6) (but not IL-1β, IL-8, IL-10, IL-12, tumor necrosis factor alpha, or transforming growth factor beta), and MDC released IL-6 and small amounts of IL-10 and IL-12p70. The patterns of cytokines secreted by T cells stimulated by staphylococcal enterotoxin B presented by MDC infected with RV or uninfected were comparable. The frequencies and patterns of cytokines secreted by memory RV-specific T cells evidenced after stimulation of peripheral blood mononuclear cells (PBMC) with RV were similar to those evidenced after stimulation of PBMC with RV-infected MDC. Finally, IDC treated with RV strongly stimulated naive allogeneic CD4+ T cells to secrete Th1 cytokines. Thus, although RV does not seem to be a strong maturing stimulus for DC, it promotes their capacity to prime Th1 cells.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2678-2683 ◽  
Author(s):  
P Wang ◽  
P Wu ◽  
JC Anthes ◽  
MI Siegel ◽  
RW Egan ◽  
...  

In highly purified human polymorphonuclear leukocyte (PMN) preparations containing less than 0.1% contaminating monocytes, significant amounts of interleukin-8 (IL-8) and small amounts of IL-1 alpha, IL-1 beta, and tumor necrosis factor-alpha (TNF-alpha) were produced by lipopolysaccharide (LPS) stimulation. Contrary to published reports, IL- 6 production could not be detected. IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-8, and TNF-alpha in LPS-stimulated PMNs, as it did in human blood mononuclear cell (MNC) preparations enriched in monocytes. Subsequent investigation of cytokine synthesis inhibitory effect of IL-10 on PMNs was focused on IL-8. IL-10 inhibited IL-8 synthesis in a dose-dependent manner and, in this regard, it was more potent than IL-4 and transforming growth factor-beta 1 (TGF-B1). In both MNCs and PMNs, degradation of LPS-induced IL-8 mRNA was enhanced by IL-10. Furthermore, as determined by nuclear run-on assays, IL-10 inhibited LPS-induced transcription of IL-8 gene in MNCs. However, in PMNs, run-on assays could not reliably detect IL-8 gene transcription. These results provide the first evidence that the human peripheral neutrophil is a target for inhibition of cytokine synthesis by IL-10, and that IL-10 acts by affecting both gene transcription and mRNA stability.


Sign in / Sign up

Export Citation Format

Share Document