scholarly journals Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1834
Author(s):  
Aneesha Achar ◽  
Rosemary Myers ◽  
Chaitali Ghosh

Due to the physiological and structural properties of the blood–brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.

2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
S Weil ◽  
E Jung ◽  
D Domínguez Azorín ◽  
J Higgins ◽  
J Reckless ◽  
...  

Abstract BACKGROUND Glioblastomas are notoriously therapy resistant tumors. As opposed to other tumor entities, no major advances in therapeutic success have been made in the past decades. This has been calling for a deeper biological understanding of the tumor, its growth and resistance patterns. We have been using a xenograft glioma model, where human glioblastoma cells are implanted under chronic cranial windows and studied longitudinally over many weeks and months using multi photon laser scanning microscopy (MPLSM). To test the effect of (new) drugs, a stable and direct delivery system avoiding the blood-brain-barrier has come into our interest. MATERIAL AND METHODS We implanted cranial windows and fluorescently labeled human glioblastoma stem-like cells into NMRI nude mice to follow up on the tumor development in our MPLSM model. After tumor establishment, an Alzet® micropump was implanted to directly deliver agents via a catheter system continuously over 28 days directly under the cranial window onto the brain surface. Using the MPLSM technique, the continuous delivery and infusion of drugs onto the brain and into the tumor was measured over many weeks in detail using MPLSM. RESULTS The establishment of the combined methods allowed reliable concurrent drug delivery over 28 days bypassing the blood-brain-barrier. Individual regions and tumor cells could be measured and followed up before, and after the beginning of the treatment, as well as after the end of the pump activity. Fluorescently labelled drugs were detectable in the MPLSM and its distribution into the brain parenchyma could be quantified. After the end of the micropump activity, further MPLSM measurements offer the possibility to observe long term effects of the applied drug on the tumor. CONCLUSION The combination of tumor observation in the MPSLM and concurrent continuous drug delivery is a feasible and reliable method for the investigation of (novel) anti-tumor agents, especially drugs that are not blood-brain-barrier penetrant. Morphological or even functional changes of individual tumor cells can be measured under and after treatment. These techniques can be used to test new drugs targeting the tumor, its tumor microtubes and tumor cells networks, and measure the effects longitudinally.


2021 ◽  
Vol 27 ◽  
Author(s):  
Dhara Lakdawala ◽  
Md Abdur Rashid ◽  
Farhan Jalees Ahmad

: Drug delivery to the brain has remained a significant challenge in treating neurodegenerative disorders such as Alzheimer's disease due to the presence of the blood-brain barrier, which primarily obstructs the access of drugs and biomolecules into the brain. Several methods to overcome the blood-brain barrier have been employed, such as chemical disruption, surgical intervention, focused ultrasound, intranasal delivery and using nanocarriers. Nanocarrier systems remain the method of choice and have shown promising results over the past decade to achieve better drug targeting. Polymeric nanocarriers and lipidic nanoparticles act as a carrier system providing better encapsulation of drugs, site-specific delivery, increased bioavailability and sustained release of drugs. The surface modifications and functionalization of these nanocarrier systems have greatly facilitated targeted drug delivery. The safety and efficacy of these nanocarrier systems have been ascertained by several in vitro and in vivo models. In the present review, we have elaborated on recent developments of nanoparticles as a drug delivery system for Alzheimer's disease, explicitly focusing on polymeric and lipidic nanoparticles.


2019 ◽  
Vol 9 (3) ◽  
pp. 198-209
Author(s):  
M. Sureshkumar ◽  
A. Pandian

: Crossing the blood-brain barrier (BBB) and treating brain disorders by delivering therapeutic agents to specific regions of the brain is a challenge. The BBB, naturally evolved, protective physiological barrier acts as a selective permeable membrane in such a way that it allows only nonionic molecules and molecules of low molecular weight to pass through. Treating brain tumor has become a great challenge as the drug molecules of larger size are not able to cross the BBB and reach the target site. The incompetence of techniques for brain-specific delivery of therapeutic molecules has led researchers to increasingly explore the diagnosis and treatment of disorders incurable with present techniques. This article is to discuss the various techniques or methods to deliver drugs to the brain crossing the BBB.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 138 ◽  
Author(s):  
Paolo Giunchedi ◽  
Elisabetta Gavini ◽  
Maria Cristina Bonferoni

Nose-to-brain delivery represents a big challenge. In fact there is a large number of neurological diseases that require therapies in which the drug must reach the brain, avoiding the difficulties due to the blood–brain barrier (BBB) and the problems connected with systemic administration, such as drug bioavailability and side-effects. For these reasons the development of nasal formulations able to deliver the drug directly into the brain is of increasing importance. This Editorial regards the contributions present in the Special Issue “Nose-to-Brain Delivery”.


2016 ◽  
Vol 45 (17) ◽  
pp. 4690-4707 ◽  
Author(s):  
Benjamí Oller-Salvia ◽  
Macarena Sánchez-Navarro ◽  
Ernest Giralt ◽  
Meritxell Teixidó

Blood–brain barrier shuttle peptides are increasingly more potent and versatile tools to enhance drug delivery to the brain.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61694 ◽  
Author(s):  
Benjamin S. Bleier ◽  
Richie E. Kohman ◽  
Rachel E. Feldman ◽  
Shreshtha Ramanlal ◽  
Xue Han

2013 ◽  
Vol 33 (12) ◽  
pp. 1944-1954 ◽  
Author(s):  
Ngoc H On ◽  
Sanjot Savant ◽  
Myron Toews ◽  
Donald W Miller

The present study characterizes the effects of lysophosphatidic acid (LPA) on blood–brain barrier (BBB) permeability focusing specifically on the time of onset, duration, and magnitude of LPA-induced changes in cerebrovascular permeability in the mouse using both magnetic resonance imaging (MRI) and near infrared fluorescence imaging (NIFR). Furthermore, potential application of LPA for enhanced drug delivery to the brain was also examined by measuring the brain accumulation of radiolabeled methotrexate. Exposure of primary cultured brain microvessel endothelial cells (BMECs) to LPA produced concentration-dependent increases in permeability that were completely abolished by clostridium toxin B. Administration of LPA disrupted BBB integrity and enhanced the permeability of small molecular weight marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRdye800cwPEG, and the P-glycoprotein efflux transporter probe, Rhodamine 800 (R800). The increase in BBB permeability occurred within 3 minutes after LPA injection and barrier integrity was restored within 20 minutes. A decreased response to LPA on large macromolecule BBB permeability was observed after repeated administration. The administration of LPA also resulted in 20-fold enhancement of radiolabeled methotrexate in the brain. These studies indicate that administration of LPA in combination with therapeutic agents may increase drug delivery to the brain.


Sign in / Sign up

Export Citation Format

Share Document