scholarly journals Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

In this study, we develop the optimum composition of copper oxide/ruthenium oxide and multi-walled carbon nanotubes (CuO/RuO2/MWCNTs) ternary nanocomposite via a hydrothermal method as an efficient electrode material for supercapacitor applications. The ratio between CuO and RuO2 varied to improve the electrochemical performance of the electrode. The synthesized nanocomposites are analyzed by high-resolution scanning electron microscopy (HR-SEM), thermo gravimetric analyzer (TGA) and electrochemical impedance spectroscopy (EIS). Furthermore, the elemental composition is analyzed by energy dispersive X-ray (EDX) spectroscopy and the specific capacitance was analyzed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) methods. The electrochemical investigations is conducted in a three-electrode system and the sample is attached on a stainless steel plate as the working electrode; platinum wire works as the counter electrode and Ag/AgCl electrode as the reference electrode, adopting 3 M (NH4)2SO4 as the electrolyte. The resultant of CuO/RuO2/MWCNT nanocomposite with 7 wt% Cu and 20 wt% Ru was found to perform the highest specific capacitance of 461.59 F/g in a current density of 1 A/g.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Paola Sanjuan-Alberte ◽  
Jayasheelan Vaithilingam ◽  
Jonathan C. Moore ◽  
Ricky D. Wildman ◽  
Christopher J. Tuck ◽  
...  

Conductive hydrogel-based materials are attracting considerable interest for bioelectronic applications due to their ability to act as more compatible soft interfaces between biological and electrical systems. Despite significant advances that are being achieved in the manufacture of hydrogels, precise control over the topographies and architectures remains challenging. In this work, we present for the first time a strategy to manufacture structures with resolutions in the micro-/nanoscale based on hydrogels with enhanced electrical properties. Gelatine methacrylate (GelMa)-based inks were formulated for two-photon polymerisation (2PP). The electrical properties of this material were improved, compared to pristine GelMa, by dispersion of multi-walled carbon nanotubes (MWCNTs) acting as conductive nanofillers, which was confirmed by electrochemical impedance spectroscopy and cyclic voltammetry. This material was also confirmed to support human induced pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) viability and growth. Ultra-thin film structures of 10 µm thickness and scaffolds were manufactured by 2PP, demonstrating the potential of this method in areas spanning tissue engineering and bioelectronics. Though further developments in the instrumentation are required to manufacture more complex structures, this work presents an innovative approach to the manufacture of conductive hydrogels in extremely low resolution.


Author(s):  
Yaofeng Wang ◽  
Fan Wang ◽  
Yang Kong ◽  
Lei Wang ◽  
Qinchuan Li

Abstract High-performance bioartificial muscles with low-cost, large bending deformation, low actuation voltage, and fast response time have drawn extensive attention as the development of human-friendly electronics in recent years. Here, we report a high-performance ionic bioartificial muscle based on the bacterial cellulose (BC)/ionic liquid (IL)/multi-walled carbon nanotubes (MWCNT) nanocomposite membrane and PEDOT:PSS electrode. The developed ionic actuator exhibits excellent electro-chemo-mechanical properties, which are ascribed to its high ionic conductivity, large specific capacitance, and ionically crosslinked structure resulting from the strong ionic interaction and physical crosslinking among BC, IL, and MWCNT. In particular, the proposed BC-IL-MWCNT (0.10 wt%) nanocomposite exhibited significant increments of Young's modulus up to 75% and specific capacitance up to 77%, leading to 2.5 times larger bending deformation than that of the BC-IL actuator. More interestingly, bioinspired applications containing artificial soft robotic finger and grapple robot were successfully demonstrated based on high-performance BC-IL-MWCNT actuator with excellent sensitivity and controllability. Thus, the newly proposed BC-IL-MWCNT bioartificial muscle will offer a viable pathway for developing next-generation artificial muscles, soft robotics, wearable electronic products, flexible tactile devices, and biomedical instruments.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 798
Author(s):  
Ana T. S. C. Brandão ◽  
Liana Anicai ◽  
Oana Andreea Lazar ◽  
Sabrina Rosoiu ◽  
Aida Pantazi ◽  
...  

Nano carbons, such as graphene and carbon nanotubes, show very interesting electrochemical properties and are becoming a focus of interest in many areas, including electrodeposition of carbon–metal composites for battery application. The aim of this study was to incorporate carbon materials (namely oxidized multi-walled carbon nanotubes (ox-MWCNT), pristine multi-walled carbon nanotubes (P-MWCNT), and reduced graphene oxide (rGO)) into a metallic tin matrix. Formation of the carbon–tin composite materials was achieved by electrodeposition from a choline chloride-based ionic solvent. The different structures and treatments of the carbon materials will create metallic composites with different characteristics. The electrochemical characterization of Sn and Sn composites was performed using chronoamperometry, potentiometry, electrochemical impedance, and cyclic voltammetry. The initial growth stages of Sn and Sn composites were characterized by a glassy-carbon (GC) electrode surface. Nucleation studies were carried out, and the effect of the carbon materials was characterized using the Scharifker and Hills (SH) and Scharifker and Mostany (SM) models. Through a non-linear fitting method, it was shown that the nucleation of Sn and Sn composites on a GC surface occurred through a 3D instantaneous process with growth controlled by diffusion. According to Raman and XRD analysis, carbon materials were successfully incorporated at the Sn matrix. AFM and SEM images showed that the carbon incorporation influences the coverage of the surface as well as the size and shape of the agglomerate. From the analysis of the corrosion tests, it is possible to say that Sn-composite films exhibit a comparable or slightly better corrosion performance as compared to pure Sn films.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 673
Author(s):  
Heba M. Hashem ◽  
Saad S. M. Hassan ◽  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
E. M. AbdelBary

A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 968 ◽  
Author(s):  
Lutho Klaas ◽  
Mmalewane Modibedi ◽  
Mkhulu Mathe ◽  
Huaneng Su ◽  
Lindiwe Khotseng

This study investigates the most effective electrocatalyst for glycerol oxidation reaction (GOR) in alkaline medium for five synthesized electrocatalysts, Pd, PdNi, PdNiO, PdMn3O4 and PdMn3O4NiO, supported on multi-walled carbon nanotubes (MWCNTs) prepared using the polyol method. The particle size and crystalline size of the electrocatalysts were determined using HR-TEM and XRD techniques, respectively, while EDS was used to determine the elemental composition. XRD showed crystalline sizes ranging from 3.4 to 10.1 nm, while HR-TEM revealed particle sizes within the range of 3.4 and 7.2 nm. The electroactivity, electron kinetics and stability of the electrocatalysts towards glycerol in alkaline medium was evaluated using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA), respectively, while the electroactive surface area (ECSA) of the electrocatalysts was determined using cyclic voltammetry (CV). The metal oxide-based Pd electrocatalysts PdNiO and PdMn3O4 were the most electrochemically active, while the addition of the second metal oxide to the Pd electrocatalyst PdMn3O4NiO did not show any improvement. This was associated with this electrocatalyst having the highest particle and crystalline sizes.


2015 ◽  
Vol 15 (5) ◽  
pp. 3385-3393 ◽  
Author(s):  
Mihaela Tertiş ◽  
Anca Florea ◽  
Bogdan Feier ◽  
Iuliu Ovidiu Marian ◽  
Luminţa Silaghi-Dumitrescu ◽  
...  

2019 ◽  
Author(s):  
Zhongguo Zheng ◽  
Lisa Schultz ◽  
John Smith

AbstractA highly sensitive DNA electrochemical biosensor was prepared based on multi-walled carbon nanotube/nano-Ag-TiO2 composite membrane. The Ag-TiO2 composite is mixed with a suitable amount of multi-walled carbon nanotubes (MWNT) dispersed in N,N-dimethylformamide to form a uniform and stable mixed solution, which is applied onto the surface of the bare carbon paste electrode. A MWNT/Ag-TiO2 modified carbon paste electrode was prepared. The large specific surface area and good electron transport properties of carbon nanotubes have a good synergistic effect on the good biocompatibility of Ag-TiO2 nanocomposites and excellent adsorption capacity of DNA, which significantly improves the immobilization and DNA hybridization of DNA probes. Detection sensitivity. The preparation of the sensing membrane and the immobilization and hybridization of DNA were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The exogenous glufosinate acetyltransferase gene fragment of transgenic plants was detected by electrochemical impedance spectroscopy. The linear range was 1. 0 × 10 - 11 ∼1. 0 × 10 - 6 mol / L. The detection limit was 3. 12 × 10 - 12 mol / L.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
Jesus Israel Barraza-Fierro ◽  
Tse-Ming Chu ◽  
Homero Castaneda-Lopez

An electrochemical characterization was performed in electrodes with different weight percentages of LiMnPO4 and multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The redox potential of LiMnPO4 cathode is close to the electrolyte decomposition, which provides an ideal scenario to study multiple reactions on a single electrode surface involving parallel steps and species transformation in both solid and liquid state. Different processes were deconvoluted using cyclic voltammetry and electrochemical impedance spectroscopy. In addition, a surface coverage model was employed to theoretically quantify the limiting step of the electrochemical process. The results show the addition of MWCNTs increased the electrical conductivity of the cathode and improved the intercalation process in LiMnPO4. The optimal concentrations of MWCNTs, which enhanced the electrical properties and decreased the water oxidation effect, were 20 and 40 wt.%.


Sign in / Sign up

Export Citation Format

Share Document