scholarly journals Affect-Logic, Embodiment, Synergetics, and the Free Energy Principle: New Approaches to the Understanding and Treatment of Schizophrenia

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1619
Author(s):  
Luc Ciompi ◽  
Wolfgang Tschacher

This theoretical paper explores the affect-logic approach to schizophrenia in light of the general complexity theories of cognition: embodied cognition, Haken’s synergetics, and Friston’s free energy principle. According to affect-logic, the mental apparatus is an embodied system open to its environment, driven by bioenergetic inputs of emotions. Emotions are rooted in goal-directed embodied states selected by evolutionary pressure for coping with specific situations such as fight, flight, attachment, and others. According to synergetics, nonlinear bifurcations and the emergence of new global patterns occur in open systems when control parameters reach a critical level. Applied to the emergence of psychotic states, synergetics and the proposed energetic understanding of emotions lead to the hypothesis that critical levels of emotional tension may be responsible for the transition from normal to psychotic modes of functioning in vulnerable individuals. In addition, the free energy principle through learning suggests that psychotic symptoms correspond to alternative modes of minimizing free energy, which then entails distorted perceptions of the body, self, and reality. This synthetic formulation has implications for novel therapeutic and preventive strategies in the treatment of psychoses, among these are milieu-therapeutic approaches of the Soteria type that focus on a sustained reduction of emotional tension and phenomenologically oriented methods for improving the perception of body, self, and reality.

2021 ◽  
Vol 12 ◽  
Author(s):  
Elmarie Venter

In this paper, I argue for an embodied, embedded approach to predictive processing and thus align the framework with situated cognition. The recent popularity of theories conceiving of the brain as a predictive organ has given rise to two broad camps in the literature that I call free energy enactivism and cognitivist predictive processing. The two approaches vary in scope and methodology. The scope of cognitivist predictive processing is narrow and restricts cognition to brain processes and structures; it does not consider the body-beyond-brain and the environment as constituents of cognitive processes. Free energy enactivism, on the other hand, includes all self-organizing systems that minimize free energy (including non-living systems) and thus does not offer any unique explanations for more complex cognitive phenomena that are unique to human cognition. Furthermore, because of its strong commitment to the mind-life continuity thesis, it does not provide an explanation of what distinguishes more sophisticated cognitive systems from simple systems. The account that I develop in this paper rejects both of these radical extremes. Instead, I propose a compromise that highlights the necessary components of predictive processing by making use of a mechanistic methodology of explanation. The starting point of the argument in this paper is that despite the interchangeable use of the terms, prediction error minimization and the free energy principle are not identical. But this distinction does not need to disrupt the status quo of the literature if we consider an alternative approach: Embodied, Embedded Predictive Processing (EEPP). EEPP accommodates the free energy principle, as argued for by free energy enactivism, but it also allows for mental representations in its explanation of cognition. Furthermore, EEPP explains how prediction error minimization is realized but, unlike cognitivist PP, it allocates a constitutive role to the body in cognition. Despite highlighting concerns regarding cognitivist PP, I do not wish to discredit the role of the neural domain or representations as free energy enactivism does. Neural structures and processes undeniably contribute to the minimization of prediction error but the role of the body is equally important. On my account, prediction error minimization and free energy minimization are deeply dependent on the body of an agent, such that the body-beyond-brain plays a constitutive role in cognitive processing. I suggest that the body plays three constitutive roles in prediction error minimization: The body regulates cognitive activity, ensuring that cognition and action are intricately linked. The body acts as distributor in the sense that it carries some of the cognitive load by fulfilling the function of minimizing prediction error. Finally, the body serves to constrain the information that is processed by an agent. In fulfilling these three roles, the agent and environment enter into a bidirectional relation through influencing and modeling the structure of the other. This connects EEPP to the free energy principle because the whole embodied agent minimizes free energy in virtue of being a model of its econiche. This grants the body a constitutive role as part of the collection of mechanisms that minimize prediction error and free energy. The body can only fulfill its role when embedded in an environment, of which it is a model. In this sense, EEPP offers the most promising alternative to cognitivist predictive processing and free energy enactivism.


2020 ◽  
Vol 43 ◽  
Author(s):  
Robert Mirski ◽  
Mark H. Bickhard ◽  
David Eck ◽  
Arkadiusz Gut

Abstract There are serious theoretical problems with the free-energy principle model, which are shown in the current article. We discuss the proposed model's inability to account for culturally emergent normativities, and point out the foundational issues that we claim this inability stems from.


Synthese ◽  
2021 ◽  
Author(s):  
Matt Sims ◽  
Giovanni Pezzulo

AbstractPredictive processing theories are increasingly popular in philosophy of mind; such process theories often gain support from the Free Energy Principle (FEP)—a normative principle for adaptive self-organized systems. Yet there is a current and much discussed debate about conflicting philosophical interpretations of FEP, e.g., representational versus non-representational. Here we argue that these different interpretations depend on implicit assumptions about what qualifies (or fails to qualify) as representational. We deploy the Free Energy Principle (FEP) instrumentally to distinguish four main notions of representation, which focus on organizational, structural, content-related and functional aspects, respectively. The various ways that these different aspects matter in arriving at representational or non-representational interpretations of the Free Energy Principle are discussed. We also discuss how the Free Energy Principle may be seen as a unified view where terms that traditionally belong to different ontologies—e.g., notions of model and expectation versus notions of autopoiesis and synchronization—can be harmonized. However, rather than attempting to settle the representationalist versus non-representationalist debate and reveal something about what representations are simpliciter, this paper demonstrates how the Free Energy Principle may be used to reveal something about those partaking in the debate; namely, what our hidden assumptions about what representations are—assumptions that act as sometimes antithetical starting points in this persistent philosophical debate.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Julian Kiverstein ◽  
Matt Sims

AbstractA mark of the cognitive should allow us to specify theoretical principles for demarcating cognitive from non-cognitive causes of behaviour in organisms. Specific criteria are required to settle the question of when in the evolution of life cognition first emerged. An answer to this question should however avoid two pitfalls. It should avoid overintellectualising the minds of other organisms, ascribing to them cognitive capacities for which they have no need given the lives they lead within the niches they inhabit. But equally it should do justice to the remarkable flexibility and adaptiveness that can be observed in the behaviour of microorganisms that do not have a nervous system. We should resist seeking non-cognitive explanations of behaviour simply because an organism fails to exhibit human-like feats of thinking, reasoning and problem-solving. We will show how Karl Friston’s Free-Energy Principle (FEP) can serve as the basis for a mark of the cognitive that avoids the twin pitfalls of overintellectualising or underestimating the cognitive achievements of evolutionarily primitive organisms. The FEP purports to describe principles of organisation that any organism must instantiate if it is to remain well-adapted to its environment. Living systems from plants and microorganisms all the way up to humans act in ways that tend in the long run to minimise free energy. If the FEP provides a mark of the cognitive, as we will argue it does, it mandates that cognition should indeed be ascribed to plants, microorganisms and other organisms that lack a nervous system.


2021 ◽  
Author(s):  
Hugh McGovern ◽  
Alexander De Foe ◽  
Pantelis Leptourgos ◽  
Philip R. Corlett ◽  
Kavindu Bandara ◽  
...  

Generalized Anxiety Disorder (GAD) is among the world’s most prevalent psychiatric disorders. Affecting an eighth of the world’s population, it often manifests as persistent apprehension which is difficult to control. Despite its prevalence, neuroscientific efforts to understand the cognitive mechanisms of GAD remain sparse. This has resulted in a fractured theoretical landscape, lacking a unitary framework. While prior theories of anxiety describe the cognitive, affective and behavioral dimensions of anxiety, a unified theory is lacking. Here, we point out that postulates derived from the Free Energy Principle (FEP) may allow for a unified theory to emerge. We argue an approach focused on predictive modelling may afford opportunities to re-conceptualize anxiety within the framework of working generative models, rather than static beliefs. We suggest that a biological system—having had persistent uncertainty in its past—will form posteriors in line with uncertainty in its future, irrespective of whether that uncertainty is real. After discussing the FEP, we explain how anxiety develops through learning uncertainty before suggesting predictions for how the model can be tested.


Author(s):  
Roman Makitra ◽  
Halyna Midyana ◽  
Liliya Bazylyak ◽  
Olena Palchykova

2017 ◽  
Author(s):  
Andrew W Corcoran ◽  
Jakob Hohwy

Interoceptive processing is commonly understood in terms of the monitoring and representation of the body’s current physiological (i.e. homeostatic) status, with aversive sensory experiences encoding some impending threat to tissue viability. However, claims that homeostasis fails to fully account for the sophisticated regulatory dynamics observed in complex organisms have led some theorists to incorporate predictive (i.e. allostatic) regulatory mechanisms within broader accounts of interoceptive processing. Critically, these frameworks invoke diverse – and potentially mutually inconsistent – interpretations of the role allostasis plays in the scheme of biological regulation. We argue in favour of a moderate, reconciliatory position in which homeostasis and allostasis are conceived as equally vital (but functionally distinct) modes of physiological control. We explore the implications of this interpretation for free energy-based accounts of interoceptive inference, advocating a similarly complementary (and hierarchical) view of homeostatic and allostatic processing.


Sign in / Sign up

Export Citation Format

Share Document