scholarly journals Transition to Zero Energy and Low Carbon Emission in Residential Buildings Located in Tropical and Temperate Climates

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4253
Author(s):  
Modeste Kameni Nematchoua ◽  
José A. Orosa ◽  
Paola Ricciardi ◽  
Esther Obonyo ◽  
Eric Jean Roy Sambatra ◽  
...  

Different methods to achieve zero-energy and low carbon on the scale of a building are shown by most of the research works. Despite this, the recommendations generally offered by researchers do not always correspond to the realities found during the construction of new buildings in a determined region. Therefore, a standard may not be valid in all climate regions of the world. Being aware of this fact, a study was carried out to analyse the design of new buildings respecting the “zero-energy and low carbon emission” concept in tropical climatic regions when they are compared with a base case of temperate regions. To reach this objective, the comparison between real and simulated data from the different buildings studied was developed. The results showed that the renovation of existing residential buildings allows for reducing up to 35% of energy demand and a great quantity of CO2 emissions in both climate types. Despite this, the investment rate linked to the construction of zero-energy buildings in tropical zones is 12 times lower than in temperate zones and the payback was double. In particular, this effect can be related to the efficiency of photovoltaic panels, which is estimated to be, at least, 34% higher in tropical zones than temperate zones. Finally, this study highlights the interest and methodology to implement zero-energy buildings in tropical regions.

Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6026
Author(s):  
Sergio Gómez Melgar ◽  
Antonio Sánchez Cordero ◽  
Marta Videras Rodríguez ◽  
José Manuel Andújar Márquez

The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing. Rescheduling these three electric circuits increases the usability of the renewable energy produced on-site, reducing the misused energy from 52.84% to 25.14%, as well as decreasing electricity costs by 58.46%.


Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Sign in / Sign up

Export Citation Format

Share Document