scholarly journals Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8140
Author(s):  
Mohammad Humayun Kabir ◽  
Graham Brodie ◽  
Dorin Gupta ◽  
Alexis Pang

Rice grain arsenic (As) is a major pathway of human dietary As exposure. This study was conducted to reduce rice grain As concentration through microwave (MW) and biochar soil treatment. Collected soils were spiked to five levels of As concentration (As-0, As-20, As-40, As-60, and As-80 mg kg−1) prior to applying three levels of biochar (BC-0, BC-10, and BC-20 t ha−1) and three levels of MW treatment (MW-0, MW-3, and MW-6 min). The results revealed that MW soil treatment alleviates As phytotoxicity as rice plant growth and grain yield increase significantly and facilitate less grain As concentration compared with the control. For instance, the highest grain As concentration (912.90 µg kg−1) was recorded in the control while it was significantly lower (442.40 µg kg−1) in the MW-6 treatment at As-80. Although the BC-10 treatment had some positive effects, unexpectedly, BC-20 had a negative effect on plant growth, grain yield, and grain As concentration. The combination of BC-10 and MW-6 treatment was found to reduce grain As concentration (498.00 µg kg−1) compared with the control (913.7 µg kg−1). Thus, either MW-6 soil treatment alone or in combination with the BC-10 treatment can be used to reduce dietary As exposure through rice consumption. Nevertheless, further study is needed to explore the effectiveness and economic feasibility of this novel technique in field conditions.

2001 ◽  
Vol 28 (9) ◽  
pp. 845 ◽  
Author(s):  
Youssef G. Yanni ◽  
Rizk Y. Rizk ◽  
Faiza K. Abd El-Fattah ◽  
Andrea Squartini ◽  
Viviana Corich ◽  
...  

This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 This paper summarizes a multinational collaborative project to search for natural, intimate associations between rhizobia and rice (Oryza sativa L.), assess their impact on plant growth, and exploit those combinations that can enhance grain yield with less dependence on inputs of nitrogen (N) fertilizer. Diverse, indigenous populations of Rhizobium leguminosarum bv. trifolii (the clover root-nodule endosymbiont) intimately colonize rice roots in the Egyptian Nile delta where this cereal has been rotated successfully with berseem clover (Trifolium alexandrinum L.) since antiquity. Laboratory and greenhouse studies have shown with certain rhizobial strain–rice variety combinations that the association promotes root and shoot growth thereby significantly improving seedling vigour that carries over to significant increases in grain yield at maturity. Three field inoculation trials in the Nile delta indicated that a few strain–variety combinations significantly increased rice grain yield, agronomic fertilizer N-use efficiency and harvest index. The benefits of this association leading to greater production of vegetative and reproductive biomass more likely involve rhizobial modulation of the plant’s root architecture for more efficient acquisition of certain soil nutrients [e.g. N, phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), sodium (Na) and molybdenum (Mo)] rather than biological N2 fixation. Inoculation increased total protein quantity per hectare in field-grown grain, thereby increasing its nutritional value without altering the ratios of nutritionally important proteins. Studies using a selected rhizobial strain (E11) indicated that it produced auxin (indoleacetic acid) and gibberellin [tentatively identified as gibberellin (GA 7 )] phytohormones representing two major classes of plant growth regulators. Axenically collected rice root exudate significantly enhanced E11’s production of this auxin. This strain extensively colonized the rice root surface under gnotobiotic culture conditions, producing distributions of spatial patchiness that would favour their localized erosion of the epidermal surface, colonization of small crevices at epidermal junctions as a possible portal to enter into the root, and quorum sensing of diffusible signal molecules indicating that their nearest bacterial neighbours are in close proximity in situ. Studies of selected rhizobial endophytes of rice indicated that they produced cell-bound cellulase and polygalacturonase enzymes that can hydrolyze glycosidic bonds in plant cell walls, and non-trifolitoxin bacteriocin(s) that can inhibit other strains of clover rhizobia. Strain E11 was able to endophytically colonize rice roots of varieties commonly used by Filipino peasant farmers, and also to stimulate genotype-specific growth-promotion of corn (Zea mays, maize) under field conditions. An amalgam of these results indicate some rhizobia have evolved an additional ecological niche enabling them to form a three-component life cycle including a free-living heterotrophic phase in soil, a N2-fixing endosymbiont phase within legume root nodules, and a beneficial growth-promoting endocolonizer phase within cereal roots in the same crop rotation. Our results further indicate the potential opportunity to exploit this newly described, plant�rhizobia association by developing biofertilizer inoculants that may assist low-income farmers in increasing cereal production (especially rice) with less fertilizer N inputs, fully consistent with both sustainable agriculture and environmental safety.


2019 ◽  
Author(s):  
Dongliang Xiong

AbstractRice plays a vital role in global food security, and its yield needs to be increased to meet escalating demand. Although many high yield quantitative trait loci (QTLs) have been identified in the last decades, rice grain yield in the main rice-producing countries is stagnating since the middle of the 1990s. By summarizing the yield performance of high-yielding QTL lines, we found that almost all the high-yielding QTL introduced lines had no practical usage in current high yield breeding programs, due mainly to their low absolute grain yield. Further analysis showed that scientists primarily focused on spikelets number per panicle alone rather than other yield traits, and, in most of the studies, the yield increase was referenced to very old cultivars. By analyzing the yield traits correlations across cultivars in both field and pot conditions, and yield traits correlations across different eco-sites using the same cultivars, we demonstrated that the rice high yield will be rarely achieved by using single-trait approaches due to the traits trade-offs. Building on this, several recommendations are provided to the next generation of biotechnological breeding in rice.


1993 ◽  
Vol 44 (6) ◽  
pp. 1211 ◽  
Author(s):  
LM Haugen ◽  
SE Smith

This investigation was initiated to assess whether inoculation of cashew (Anacardium occidentale) seedlings under commercial nursery conditions would result in mycorrhizal development in the root systems and increased growth of the plants. Three experiments were carried out to investigate the effects of different nursery factors on infection and plant growth. These were: use of triple superphosphate, pH of the potting mix (varied by lime additions) and removal of the cotyledons. Inoculation with the commercially available mycorrhizal inoculum Nutrilink� (containing spores of Glomus intraradices) resulted in mycorrhiza formation, but the levels of infection were low even in the absence of triple superphosphate addition. The highest infection (55%) was observed in seedlings from which the cotyledons had been removed. Inoculated plants in general grew less well than non-inoculated plants under all conditions. This depression may be the result of changes in pH following inoculation or the result of development of mycorrhizal infection. There were no positive effects of inoculation on nutrient concentrations in the tissues, except that inoculated plants had higher concentrations of K in both leaves and roots. Addition of lime to the potting mix did not significantly affect the extent of infection or the responses of the plants. Cotyledon removal was associated with higher infection and a reduction in the negative effect of inoculation on growth, although plant growth was reduced in inoculated and non-inoculated treatments. It does not appear that inoculation with NutriLink is appropriate in the potting mixes used, particularly as the formulation causes changes in pH of the potting mixes. Other strategies will need to be adopted to optimize potential benefits of mycorrhizas in cashew production.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Onja Ratsiatosika ◽  
Malalatiana Razafindrakoto ◽  
Tantely Razafimbelo ◽  
Michel Rabenarivo ◽  
Thierry Becquer ◽  
...  

The effects of earthworm inoculation and cropping systems on upland rice systems were examined over a four-year period in the Highlands of Madagascar. Each year, endogeic earthworms Pontoscolex corethrurus (Rhinodrilidae) were inoculated (EW+) at a density of 75 ind m−2 or were not inoculated (EW0). Inoculation was tested in three cropping systems: conservation agriculture (CA) and traditional tillage with or without residues restitution. Soil and plant properties were measured during the first three years while soil biological properties were assessed at the fourth year. At the end of the experiment, earthworm density was three-fold higher in EW+ than in EW0, demonstrating the success of the inoculation. Earthworm density was more important in CA than in tillage systems. Earthworm inoculation had higher significant effects on soil and plant properties than cropping systems. Earthworm inoculation had positive effects on soil macroaggregation (+43%), aboveground biomass (+27%), rice grain yield (+45%), and N grain amount (+43%). Intensifying earthworm activity in field conditions to meet the challenge of ecological transition is supported by our study.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 703-707 ◽  
Author(s):  
Amadou Diarra ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted to investigate methods of controlling red rice (Oryza sativaL. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2or with CaO2plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3343
Author(s):  
Seungkook Roh ◽  
Hae-Gyung Geong

This article extends the coverage of the trust–acceptability model to a new situation of nuclear phase-out by investigating the effect of trust on the public acceptance of nuclear power, with South Korea as the research setting. Through the structural equation modeling of a nationwide survey dataset from South Korea, we examined the effects of the public’s trust in the various actors related to nuclear power on their perceptions of the benefits and risks of nuclear power and their acceptance of nuclear power. Contrary to previous studies’ findings, in South Korea, under a nuclear phase-out policy by the government, trust in government revealed a negative impact on the public acceptance of nuclear power. Trust in environmental non-governmental groups also showed a negative effect on nuclear power acceptance. In contrast, trust in nuclear energy authority and trust in nuclear academia both had positive effects. In all cases, the effect of a trust variable on nuclear power acceptance was at least partially accounted for by the trust’s indirect effects through benefit perception and risk perception. These findings strengthen the external validity of the trust–acceptability model and provide implications for both researchers and practitioners.


Sign in / Sign up

Export Citation Format

Share Document