scholarly journals Influence of Externally Bonded CFRP on the Shear Behavior of Strengthened and Rehabilitated Reinforced Concrete T-Beams Containing Shear Stirrups

Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 87
Author(s):  
Mu’tasime Abdel-Jaber

This study aims to investigate the effect of using externally bonded carbon fiber reinforced polymer (CFRP) on the strengthening and rehabilitation of reinforced concrete (RC) T-beams reinforced with steel stirrups. Three configurations of CFRP were used: 45° inclined strips, horizontal straight strips, and U-wrapped sheets. A total of 19 specimens of strengthened and preloaded RC T-beams were experimentally tested. The experimental results were compared with the theoretical values determined according to the ACI 440.2R−17 code. The results proved that all beams containing CFRP recorded higher strength than the control sample, regardless of whether the beams were tested for strengthening or rehabilitation purposes. The horizontal straight strips of the CFRP schemes recorded the highest enhancement in the shear capacity, followed by the U-wrapped sheets and inclined strips. Moreover, the ACI 440.2R−17 code overestimated the capacities of some samples.

2018 ◽  
Vol 22 (6) ◽  
pp. 1412-1425 ◽  
Author(s):  
Sara Honarparast ◽  
Georges El-Saikaly ◽  
Omar Chaallal

A large number of existing buildings have seismic-resistant systems designed according to old code provisions. These structural systems exhibit non-ductile behavior and can present a significant risk in the case of a moderate or significant seismic event. Reinforced concrete–coupled shear walls designed to old codes and standards are among those deficient structures that need to be seismically upgraded. This article aims to investigate a new retrofitting and upgrading method using externally bonded carbon fiber–reinforced polymer composites for existing or/and damaged reinforced concrete coupling beams that can improve the seismic performance of them during earthquakes. To this end, an experimental test was conducted to evaluate the seismic behavior of two identical reinforced concrete–coupled shear wall specimens under reverse cyclic loading. To simulate the old existing building, the specimens were designed and constructed according to the old 1941 National Building Code of Canada with a conventionally reinforced coupling beam. One of the specimens was tested as a control, and the other was strengthened using externally bonded carbon fiber–reinforced polymer composites to evaluate the improvement in its seismic performance. Results show that the retrofit using externally bonded carbon fiber–reinforced polymer resulted in significant enhancement in strength and energy dissipation capacity compared to the conventionally reinforced coupling beam from the control specimen. In addition, externally bonded carbon fiber–reinforced polymer sheets resulted in much improved hysteretic and ductile behavior and in lesser strength and stiffness degradation.


2021 ◽  
pp. 136943322110499
Author(s):  
Riyam J Abed ◽  
Mohammed A Mashrei ◽  
Ali A Sultan

The externally bonded reinforcement on grooves (EBROG) method is increasingly recognized as an alternative strengthening method that can overcome the debonding problem. This study aims to experimentally investigate the effectiveness of EBROG as compared to the conventional externally bonded reinforcement (EBR) method in strengthening reinforced concrete (RC) beams. Twelve RC beams have been tested under four point load bending. One of these beams has been designated as a reference beam, seven beams have been strengthened with carbon fiber reinforced polymer (CFRP) sheets, and four beams have been strengthened with CFRP laminates using EBROG or EBR methods. The effect of CFRP type, number of layers, as well as the type of strengthening methods on the flexural performance have been also investigated. The load, deflection, stiffness, and failure modes were recorded and discussed intensively. Overall, test results indicated that the flexural strength and stiffness of the strengthened specimens using EBR or EBROG methods increased compared to the control beam, where the increase in the load carrying capacity of beams strengthened using the EBR method ranged between 24.8 and 48.2% and by the EBROG method ranged between 31.7 and 76.7% of the control beam. The most interesting result obtained is that the failure mode of beams has been changed from debonding of CFRP material to rupture of CFRP in some samples strengthened by EBROG, which demonstrates the superior behavior of this strengthening technique as compared to the traditional strengthening using EBR.


For reinforced concrete (RC) structures, retrofit of structures are needed to be done for several situations. These situations include the renovation of structure by adding new components (floors or extension) and elimination of safety risks (resulting from unforeseen effects - forces and durability). Most retrofit methods for RC structures need destruction of existing members and hard work on increasing of existing section dimension and reinforcements. Whereas, using carbon fiber reinforced polymer (CFRP) strips is an easy option to increase the flexural moment or shear capacity of RC members without destruction. In that case, the use of the structure is provided during the application. In this chapter, the optimum design of CFRP strips is presented for increasing the insufficient shear capacity of RC beams. The design constraints are provided according to ACI-318: Building code requirements for structural concrete and ACI-440: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structure.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881687
Author(s):  
Zuohu Wang ◽  
Yuan Yao ◽  
Du Liu ◽  
Yuqiang Cui ◽  
Weizhang Liao

This article presents experimental and numerical studies on the shear behavior of reinforced concrete beams pre-stressed with carbon fiber reinforced polymer tendons. A total of 23 beams were tested to analyze the failure mode and shear performance of pre-stressed concrete beams. Experimental results revealed that there were two typical shear failure modes, that is, shear compression failure and inclined compression failure. Next, the experimental and numerical results were used to explore factors influencing the failure mode and the shear behavior of the concrete beams, including the type of pre-stressing tendons, stirrup ratio, shear span–depth ratio, number of pre-stressing tendons, and their initial pretension levels. It is demonstrated that shear span–depth ratio and stirrup ratio are the two main determinants of the failure mode and shear capacity of the concrete beams pre-stressed with carbon fiber reinforced polymer tendons. However, the bonding conditions of the pre-stressing carbon fiber reinforced polymer tendons have no significant effect on the shear capacity of the pre-stressed concrete beam.


Sign in / Sign up

Export Citation Format

Share Document