scholarly journals Use of IHF-QD Microscopic Analysis for the Detection of Food Allergenic Components: Peanuts and Wheat Protein

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 239 ◽  
Author(s):  
Ludmila Kalčáková ◽  
Bohuslava Tremlová ◽  
Matej Pospiech ◽  
Martin Hostovský ◽  
Dani Dordević ◽  
...  

The aim of the study was to analytically evaluate quantum dots in immunohistofluorescence (IHF-QD) microscopic imaging as detectors of food allergens—peanut and wheat. The experiment was designed as two in silico experiments or simulations: (a) models of pastry samples were prepared with the addition of allergenic components (peanut and wheat protein components) and without the addition of allergenic components, and (b) positive and negative commercial samples underwent food allergen detection. The samples from both simulations were tested by the ELISA and IHF-QD microscopic methods. The primary antibodies (secondary antibodies to a rabbit Fc fragment with labeled CdSe/ZnS QD) were labelled at 525, 585, and 655 nm emissions. The use of quantum dots (QDs) has expanded to many science areas and they are also finding use in food allergen detection, as shown in the study. The study indicated that differences between the ELISA and IHF-QD microscopic methods were not observable among experimentally produced pastry samples with and without allergenic components, although differences were observed among commercial samples. The important value of the study is certainly the differences found in the application of different QD conjugates (525, 585, and 655). The highest contrast was found in the application of 585 QD conjugates that can serve for the possible quantification of present food allergens—peanuts and wheat. The study clearly emphasized that QD can be used for the qualitative detection of food allergens and can represent a reliable analytical method for food allergen detection in different food matrixes.

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0234899
Author(s):  
Eric A. E. Garber ◽  
Chung Y. Cho ◽  
Prasad Rallabhandi ◽  
William L. Nowatzke ◽  
Kerry G. Oliver ◽  
...  

2020 ◽  
Vol 83 (6) ◽  
pp. 1050-1056 ◽  
Author(s):  
PRASAD RALLABHANDI ◽  
CHUNG Y. CHO ◽  
WILLIAM L. NOWATZKE ◽  
KERRY G. OLIVER ◽  
ERIC A. E. GARBER

ABSTRACT The xMAP food allergen detection assay (xMAP FADA) can simultaneously detect 15 analytes (14 food allergens plus gluten) in one analysis. The xMAP FADA typically employs two antibody bead sets per analyte, providing built-in confirmation that is not available with other antibody-based assays. Before an analytical method can be used, its reliability must be assessed when conditions of the assay procedure are altered. This study was conducted to determine the effects on assay performance associated with changes in incubation temperature, amounts of the antibody bead cocktail, and concentrations of detection antibody and β-mercaptoethanol in the reduced-denatured extraction buffer. The analysis of buffered-detergent extracts revealed lower responses at 22°C than at 37°C, but temperature had no effect on the analysis of reduced-denatured extracts. Changes in β-mercaptoethanol and detection antibody concentrations had an effect on the detection of only milk in the reduced-denatured extracts. A slight change in the measured bead count was observed when one-fourth of the bead cocktail was used, and a large decrease in the bead count was noted when one-eighth of the recommended amount was used, but this number (≥25) was still sufficient to provide reliable results. Overall, the xMAP FADA was very robust to changes in the assay procedure, which may inadvertently occur. HIGHLIGHTS


2019 ◽  
Vol 102 (5) ◽  
pp. 1263-1270 ◽  
Author(s):  
Weili Xiong ◽  
Melinda A McFarland ◽  
Cary Pirone ◽  
Christine H Parker

Abstract Background: To effectively safeguard the food-allergic population and support compliance with food-labeling regulations, the food industry and regulatory agencies require reliable methods for food allergen detection and quantification. MS-based detection of food allergens relies on the systematic identification of robust and selective target peptide markers. The selection of proteotypic peptide markers, however, relies on the availability of high-quality protein sequence information, a bottleneck for the analysis of many plant-based proteomes. Method: In this work, data were compiled for reference tree nut ingredients and evaluated using a parsimony-driven global proteomics workflow. Results: The utility of supplementing existing incomplete protein sequence databases with translated genomic sequencing data was evaluated for English walnut and provided enhanced selection of candidate peptide markers and differentiation between closely related species. Highlights: Future improvements of protein databases and release of genomics-derived sequences are expected to facilitate the development of robust and harmonized LC–tandem MS-based methods for food allergen detection.


2016 ◽  
Vol 137 (2) ◽  
pp. AB406
Author(s):  
Nathan L. Marsteller ◽  
Kwame Andoh-Kumi ◽  
Stef J. Koppelman ◽  
Richard E. Goodman ◽  
Joe L. Baumert

2020 ◽  
Vol 19 (6) ◽  
pp. 3343-3364
Author(s):  
Linglin Fu ◽  
Yifan Qian ◽  
Jinru Zhou ◽  
Lei Zheng ◽  
Yanbo Wang

2019 ◽  
Vol 274 ◽  
pp. 526-534 ◽  
Author(s):  
Behnam Keshavarz ◽  
Xingyi Jiang ◽  
Yun-Hwa Peggy Hsieh ◽  
Qinchun Rao

Author(s):  
М.В. Фетисова ◽  
А.А. Корнев ◽  
А.С. Букатин ◽  
Н.А. Филатов ◽  
И.Е. Елисеев ◽  
...  

The paper demonstrates the possibility of using microdisk lasers 10 µm in diameter with an active region based on InAs/InGaAs quantum dots synthesized on GaAs substrates for biodetection. As a detectable object we used chimeric monoclonal antibodies to the CD20 protein covalently attached to the surface of microdisk lasers operating under optical pumping at room temperature in an aqueous medium. It was shown that the attached secondary antibodies cause an increase in the threshold power of lasing and also to an increase in the half-width of the resonant laser line.


Sign in / Sign up

Export Citation Format

Share Document