scholarly journals GOx/Hb Cascade Oxidized Crosslinking of Silk Fibroin for Tissue-Responsive Wound Repair

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 56
Author(s):  
Hongdou Shen ◽  
Pei Wang ◽  
Xiaoke Han ◽  
Mengli Ma ◽  
Yinghui Shang ◽  
...  

Promising wound dressings can achieve rapid soft-tissue filling while refactoring the biochemical and biophysical microenvironment to recruit endogenous cells, facilitating tissue healing, integration, and regeneration. In this study, a tissue biomolecule-responsive hydrogel matrix, employing natural silk fibroin (SF) as a functional biopolymer and haemoglobin (Hb) as a peroxidase-like biocatalyst, was fabricated through cascade enzymatic crosslinking. The hydrogels possessed mechanical tunability and displayed adjustable gelation times. A tyrosine unit on SF stabilised the structure of Hb during the cascade oxidation process; thus, the immobilized Hb in SF hydrogels exhibited higher biocatalytic efficiency than the free enzyme system, which provided a continuously antioxidative system. The regulation of the dual enzyme ratio endowed the hydrogels with favourable biocompatibility, biodegradability, and adhesion strength. These multifunctional hydrogels provided a three-dimensional porous extracellular matrix-like microenvironment for promoting cell adhesion and proliferation. A rat model with a full-thickness skin defect revealed accelerated wound regeneration via collagen deposition, re-epithelialisation and revascularisation. Enzyme-loaded hydrogels are an attractive and high-safety biofilling material with the potential for wound healing, tissue regeneration, and haemostasis.

Author(s):  
Guanhua Lan ◽  
Suping Zhu ◽  
Dong Chen ◽  
Hua Zhang ◽  
Lijin Zou ◽  
...  

Polyzwitterionic hydrogels as skin wound dressings have been extensively studied owing to their superior antibacterial properties and skin adhesiveness, but their practical applications still suffer from a low adhesion strength and a high swelling ratio, which hinder the application of hydrogel for cutaneous healing. Here, we developed a novel biocompatible poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PolySBMA) composite hydrogel with high stretchability, low swelling, strong skin adhesiveness, and antibacterial effect for enhancing wound healing. Naturally rigid polymers including quaternized chitosan methacrylate (QCSMA) and gelatin methacrylate (GelMA) are used as bioactive cross-linkers to endow PolySBMA/QCSMA/GelMA (SQG) hydrogel with a low swelling ratio and high bioactivity. The optimized hydrogel has excellent mechanical flexibility, with the ultimate tensile strength, tensile strain, modulus, and toughness of up to 344.5 kPa, 364%, 14.7 kPa, and 33.4 kJ m−3, respectively. The adhesiveness of the hydrogel to the skin tissue is as high as 38.2 kPa, which is critical for stopping the bleeding from the wound. The synergistic contributions from the PolySBMA and QCSMA endow hydrogel with good antibacterial properties against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Moreover, the natural polymer cross-linked polyzwitterionic hydrogel shows good cell activity, hemocompatibility, and histocompatibility. The in vivo full-thickness skin defect model demonstrates that the SQG hydrogel efficiently improves the granulation tissue formation and collagen deposition. In summary, such superiorly skin-adhesive antibacterial biocompatible hydrogel with controllable flexibility and swelling holds great promise as wound dressings for acute wounds.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3921-3926 ◽  
Author(s):  
Kevin S. Jackson ◽  
Kari Inoue ◽  
David A. Davis ◽  
Tyvette S. Hilliard ◽  
Joanna E. Burdette

Ovarian cancers are primarily derived from a single layer of epithelial cells surrounding the ovary, the ovarian surface epithelium (OSE). Ovarian surface proliferation is associated with ovulation and has been suggested to play a role in ovarian surface transformation and cancer progression. Aspects of ovarian surface repair after ovulation include proliferation, migration, and surface regeneration. To study ovarian surface repair, an organ culture system was developed that supports the proliferation, encapsulation, and repair of an artificially wounded surface. Wounded mouse ovaries embedded into an alginate hydrogel matrix have normal OSE cells as demonstrated by expression of cytokeratin 8, vimentin, N-cadherin, and a lack of E-cadherin. Normal OSE cells began proliferating and migrating around wounded surfaces after 1 d of culture. Organ cultures were propagated in medium supplemented with BSA and fetal bovine serum to determine optimal growth conditions. BSA cultured organs had OSE that proliferated significantly more than controls until d 4, whereas fetal bovine serum cultured organs had significantly more surface area encapsulated by OSE. Overall, a three-dimensional ovarian organ culture supports the growth of normal OSE in response to artificial wounding and provides a novel system for investigating wound repair as it relates to the possible role of ovulation and ovarian cancer.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1939 ◽  
Author(s):  
Tomoko Hashimoto ◽  
Katsura Kojima ◽  
Yasushi Tamada

Silk fibroin (SF), which offers the benefits of biosafety, biocompatibility, and mechanical strength, has potential for use as a good biomedical material, especially in the tissue engineering field. This study investigated the use of SF biomaterials as a wound dressing compared to commercially available collagen materials. After human fibroblasts (WI-38) were cultured on both films and sponges, their cell motilities and gene expressions related to wound repair and tissue reconstruction were evaluated. Compared to the collagen film (Col film), the SF film induced higher cell motility; higher expressions of genes were observed on the SF film. Extracellular matrix production-related genes were up-regulated in WI-38 fibroblasts cultured on the SF sponges. These results suggest that SF-based biomaterials can accelerate wound healing and tissue reconstruction. They can be useful biomaterials for functional wound dressings.


2006 ◽  
Vol 17 (6) ◽  
pp. 547-552 ◽  
Author(s):  
Dae-Hyun Roh ◽  
Seuk-Yun Kang ◽  
Jeom-Yong Kim ◽  
Young-Bae Kwon ◽  
Hae Young Kweon ◽  
...  

2010 ◽  
Vol 20 (5) ◽  
pp. 295-308 ◽  
Author(s):  
Guoping Guan ◽  
Lun Bai ◽  
Baoqi Zuo ◽  
Mingzhong Li ◽  
Zhengyu Wu ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Sirong He ◽  
Dan Shi ◽  
Zhigang Han ◽  
Zhaoming Dong ◽  
Yajun Xie ◽  
...  

Abstract Background Silk fibroin hydrogel, derived from Bombyx mori cocoons, has been shown to have potential effects on wound healing due to its excellent biocompatibility and less immunogenic and biodegradable properties. Many studies suggest silk fibroin as a promising material of wound dressing and it can support the adhesion and proliferation of a variety of human cells in vitro. However, lack of translational evidence has hampered its clinical applications for skin repair. Herein, a heparin-immobilized fibroin hydrogel was fabricated to deliver FGF1 (human acidic fibroblast growth factor 1) on top of wound in rats with full-thickness skin excision by performing comprehensive preclinical studies to fully evaluate its safety and effectiveness. The wound-healing efficiency of developed fibroin hydrogels was evaluated in full-thickness wound model of rats, compared with the chitosan used clinically. Results The water absorption, swelling ratio, accumulative FGF1 releasing rate and biodegradation ratio of fabricated hydrogels were measured. The regenerated fibroin hydrogels with good water uptake properties rapidly swelled to a 17.3-fold maximum swelling behavior over 12 h and a total amount of 40.48 ± 1.28% hydrogels was lost within 15 days. Furthermore, accumulative releasing data suggested that heparinized hydrogels possessed effective release behavior of FGF1. Then full-thickness skin excision was created in rats and left untreated or covered with heparinized fibroin hydrogels-immobilized recombinant human FGF1. The histological evaluation using hematoxylin and eosin (HE) and Masson’s trichrome (MT) staining was performed to observe the dermic formation and collagen deposition on the wound-healing site. To evaluate the wound-healing mechanisms induced by fibroin hydrogel treatment, wound-healing scratch and cell proliferation assay were performed. it was found that both fibroin hydrogels and FGF1 can facilitate the migration of fibroblast L929 cells proliferation and migration. Conclusion This study provides systematic preclinical evidence that the silk fibroin promotes wound healing as a wound-healing dressing, thereby establishing a foundation toward its further application for new treatment options of wound repair and regeneration.


2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


Author(s):  
Rong Zhou ◽  
Lin Qiu ◽  
Jun Xiao ◽  
Xiaobo Mao ◽  
Xingang Yuan

Abstract The incidence of pediatric treadmill hand friction burns has been increasing every year. The injuries are deeper than thermal hand burns, the optimal treatment remains unclear. This was a retrospective study of children who received surgery for treadmill hand friction burns from January 1, 2015, to December 31, 2019, in a single burn center. A total of 22 children were surveyed. The patients were naturally divided into two groups: the wound repair group (13 patients), which was admitted early to the hospital after injury and received debridement and vacuum sealing drainage initially, and a full-thickness skin graft later; and the scar repair group (9 patients), in which a scar contracture developed as a result of wound healing and received scar release and skin grafting later. The Modified Michigan Hand Questionnaire score in the wound repair group was 116.31 ± 10.55, and the corresponding score in the scar repair group was 117.56 ± 8.85 (P>0.05), no statistically significant difference. The Vancouver Scar Scale score in the wound repair group was 4.15 ± 1.21, and the corresponding score in the scar repair group was 7.22 ± 1.09 (P<0.05). Parents were satisfied with the postoperative appearance and function of the hand. None in the two groups required secondary surgery. If the burns are deep second degree, third degree, or infected, early debridement, vacuum sealing drainage initially, and a full-thickness skin graft can obviously relieve pediatric pain, shorten the course of the disease, and restore the function of the hand as soon as possible.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Sign in / Sign up

Export Citation Format

Share Document