scholarly journals Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements

2020 ◽  
Vol 22 (1) ◽  
pp. 130
Author(s):  
Ahmed Malki ◽  
Rasha Abu ElRuz ◽  
Ishita Gupta ◽  
Asma Allouch ◽  
Semir Vranic ◽  
...  

Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.

Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2018 ◽  
Vol 19 (7) ◽  
pp. 2108 ◽  
Author(s):  
Elisabetta Rubini ◽  
Fabio Altieri ◽  
Silvia Chichiarelli ◽  
Flavia Giamogante ◽  
Stefania Carissimi ◽  
...  

Background: Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the “Valle del Sacco” found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. Materials and Methods: Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. Results and Conclusions: The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.


2021 ◽  
Vol 118 (44) ◽  
pp. e2114258118
Author(s):  
Takahiro Masaki ◽  
Makoto Habara ◽  
Yuki Sato ◽  
Takahiro Goshima ◽  
Keisuke Maeda ◽  
...  

Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118. Finally, the expression of the calcineurin A–α gene (PPP3CA) was associated with poor prognosis in ER-α–positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α–positive breast cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fengzhou Li ◽  
Shilei Zhao ◽  
Tao Guo ◽  
Jinxiu Li ◽  
Chundong Gu

Purpose.Leptin is a nutritional cytokine encoded by the obesity gene whose concentration in the tumor microenvironment is closely related to the occurrence and progression of cancer. However, previous evidence has suggested that there is no clear relationship between serum leptin concentrations and lung cancer progression. Cancer-associated fibroblasts (CAFs), the most abundant component of the tumor microenvironment in a variety of solid tumors, were recently reported to produce leptin. Therefore, it was inferred that leptin is most likely to affect non-small-cell lung cancer (NSCLC) through an autocrine and paracrine mechanism. In the current study, we investigated the paracrine effect and mechanism of leptin produced by CAFs on NSCLC by establishing a novel in vitro cell coculture system.Methods.A noncontact coculture device was designed and made by 3D printing. CAFs and paired normal lung fibroblasts (NLFs) from 5 patients were successfully isolated and cocultured with two NSCLC cell lines in a coculture system. The background expression of leptin was detected by western blot. The in situ expression of leptin and its receptor (Ob-R) in NSCLC tissues and paired normal lung tissues was analyzed by immunohistochemistry. Furthermore, we downregulated the expression of leptin in CAFs and assessed changes in its promotion on NSCLC cells in the coculture system. Finally, changes in the phosphorylation of ERK1/2 and AKT were examined to investigate the molecular mechanisms responsible for the paracrine promotion of NSCLC cells by leptin.Results.Leptin was overexpressed in nearly all five primary CAF lines compared with its expression in paired NLFs. IHC staining showed that the expression of leptin was high in NSCLC cells, slightly lower in CAF, and negative in normal lung tissue. Ob-R was strongly expressed in NSCLC cells. The ability of A549 and H1299 cells to proliferate and migrate was enhanced by high leptin levels in both the cocultured fibroblasts and the culture medium. Furthermore, western blot assays suggested that the MAPK/ERK1/2 and PI3K/AKT signaling pathways were activated by leptin produced by CAFs, which demonstrated that the functions of paracrine leptin in NSCLC are as those of the serum leptin to other cancers.Conclusion.Leptin produced by CAF promotes proliferation and migration of NSCLC cells probably via PI3K/AKT and MAPK/ERK1/2 signaling pathways in a paracrine manner.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769168 ◽  
Author(s):  
Siying Zhou ◽  
Sijie Zhang ◽  
Hongyu Shen ◽  
Wei Chen ◽  
Hanzi Xu ◽  
...  

Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.


2014 ◽  
Vol 28 (5) ◽  
pp. 740-758 ◽  
Author(s):  
Lingzhi Wu ◽  
Hailin Zhao ◽  
Tianlong Wang ◽  
Chen Pac-Soo ◽  
Daqing Ma

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Emmanuelle Berger ◽  
Nathalie Vega ◽  
Michèle Weiss-Gayet ◽  
Alain Géloën

Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L)versuslow (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.


Author(s):  
Zhifu Gui ◽  
Zhenguo Zhao ◽  
Qi Sun ◽  
Guoyi Shao ◽  
Jianming Huang ◽  
...  

Long non-coding RNAs (lncRNAs) play important roles in human cancers including gastric cancer (GC). Dysregulation of lncRNAs is involved in a variety of pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of FEZF1-AS1 in chemoresistance of GC remain unknown. In this study, we aimed to determine the role of FEZF1-AS1 in chemoresistance of GC. The level of FEZF1-AS1 in GC tissues and GC cell lines was assessed by qRT-PCR. Our results showed that the expression of FEZF1-AS1 was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identified that high level of FEZF1-AS1 is an independent predictor for poor overall survival. Increased FEZF1-AS1 expression promoted gastric cancer cell proliferation in vitro. Additionally, FEZF1-AS1 was upregulated in chemo-resistant GC tissues. The regulatory effect of FEZF1-AS1 on multi-drug resistance (MDR) in GC cells and the underlying mechanism was investigated. It was found that increased FEZF1-AS1 expression promoted chemo-resistance of GC cells. Molecular interactions were determined by RNA immunoprecipitation (RIP) and the results showed that FEZF1-AS1 regulated chemo-resistance of GC cells through modulating autophagy by directly targeting ATG5. The proliferation and autophagy of GC cells promoted by overexpression of LncFEZF1-AS1 was suppressed when ATG5 was knocked down. Moreover, knockdown of FEZF1-AS1 inhibited tumor growth and increased 5-FU sensitivity in GC cells in vivo. Taken together, this study revealed that the FEZF1-AS1/ATG5 axis regulates MDR of GC cells via modulating autophagy.


2020 ◽  
Author(s):  
Qing Xia ◽  
Qiuling Li ◽  
Shangquan Gan ◽  
Xiaofei Guo ◽  
Xiaosheng Zhang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) can play important roles in uterine and ovarian functions. However, little researches have been done on the role of lncRNAs in the adrenal gland of sheep. Herein, RNA sequencing was used to compare and analyze gene expressions in adrenal tissues between FecB ++ (WW) and FecB BB (MM) sheep in the follicular and luteal phases and key lncRNAs and genes associated with reproduction were identified. Results In MM sheep, 38 lncRNAs and 545 mRNAs were differentially expressed in the adrenal gland between the luteal and follicular phases; In WW sheep, 30 differentially expressed lncRNAs and 210 mRNAs were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that differentially expressed lncRNAs and their target genes are mainly involved in the circadian rhythm, the mitogen activated protein kinase, thyroid, ovarian steroidogenesis and transforming growth factor beta signaling pathways. Key lncRNAs can regulate reproduction by modulating genes involved in these signaling pathways and biological processes. Specifically, XLOC_254761 , XLOC_357966 , 105614839 and XLOC_212877 targeting CREB1 , PER3 , SMAD1 and TGFBR2 , respectively, appear to play key regulatory roles. Conclusion These results broaden our understanding of lncRNAs in adrenal gland of sheep and provide new insights into the molecular mechanisms underlying sheep reproduction.


Sign in / Sign up

Export Citation Format

Share Document