scholarly journals Spatio-Temporal Coupling Characteristics and the Driving Mechanism of Population-Land-Industry Urbanization in the Yangtze River Economic Belt

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 400
Author(s):  
Liejia Huang ◽  
Peng Yang ◽  
Boqing Zhang ◽  
Weiyan Hu

The purpose of this paper is to probe into the coupled coordination of urbanization in population, land, and industry to improve urbanization quality. A coupled coordination degree model, spatial analysis method and spatial metering model are employed. The study area is 110 prefecture-level cities in the Yangtze River Economic Belt. The study shows that: (1) the coupling degree of the population-land-industry urbanization grew very slowly between 2006 and 2016. On the whole, the three-dimensional urbanization is in a running-in period, and land-based urbanization dominates, while population-based urbanization and industry-based urbanization are relatively lagging behind. (2) The three major urban agglomerations, the Chengdu-Chongqing, the middle reaches of the Yangtze River and the Yangtze River Delta, are parallel to the whole area in terms of the coupling degree of the three dimensional urbanization with a well-ordered structure, especially in the central cities of the three major urban agglomerations. (3) There is significant spatial correlation in the coupling degree and coordination degree of the three-dimensional urbanization. The high value of coupling degree and coordination degree are clustered continuously in developed cities, provincial capitals, and central cities of the downstream reaches of the Yangtze River. (4) The coordinated degree has significant positive spatial autocorrelation, showing obvious spatial agglomeration characteristics: H-H agglomeration areas are concentrated in the downstream developed areas such as Jiangsu, Zhejiang, and Shanghai. L-L agglomeration areas are mainly concentrated in upstream undeveloped areas, but the number of their cities shows a decreasing trend. (5) The coordination degree of the three-dimensional urbanization is the result of the comprehensive effect of economic development level, the government’s decision-making behavior, and urban location. Among them, the economic development level, urbanization investment, traffic condition, and urban geographical location play a decisive role. This paper contributes to the existing literatures by exploring urbanization quality, spatial correlation and influencing factors from the perspectives of the three-dimensional urbanization in the Yangtze River Economic Belt. The conclusion might be helpful to promote the coupling and coordinated development of urbanization in population-land-industry, and ultimately to improve urbanization quality in the Yangtze River Economic Belt.

2019 ◽  
Vol 11 (3) ◽  
pp. 822 ◽  
Author(s):  
Dong Xu ◽  
Guolin Hou

The research on the coupling coordination of regional urbanization is of great significance for achieving sustainable urbanization. Based on the theories of coordinated development, this paper constructs an index system for comprehensive evaluation of the three sub-systems of urbanization (population, economy and land urbanization). Then, the entropy method, coupling coordination degree model and spatial autocorrelation analysis are used to explore the spatiotemporal characteristics of overall and pairwise coordination among population, land and economy urbanization. Finally, the geographic detector model is used to analyze the influencing factors in the urbanization process. The results show that: (1) the levels of population, land and economy urbanization in the Yangtze River Delta have been improved from 2001 to 2016. The overall and pairwise coupling coordination degrees among them also continue to improve and the stage characteristics are presented. (2) The spatial distribution of low-level and high-level coupling coordination cities shows a certain spatial dependence and a Z-shaped pattern, respectively. The spatiotemporal characteristics of pairwise coupling coordination indicate regional imbalance of the urbanization. (3) The overall coupling coordination degree of urbanization has an apparent spatial autocorrelation, with its local spatial correlation patterns dominated by the High–High and Low–Low type agglomeration. Significant differences in local spatial correlation patterns of the pairwise coupling coordination suggest that regional synergy should not be neglected. (4) The economic development level is the main factor influencing the spatiotemporal differentiation of the coupling coordination of urbanization. Location traffic conditions and population agglomeration effect are the second most influencing factors. The evolution mechanisms of coupling coordination of urbanization are affected by factors in change. The findings highlight the importance of dealing with the relationship among population, land and economy in the process of regional urbanization and have implications for promoting the integration of urban agglomerations.


2020 ◽  
Vol 24 (2) ◽  
pp. 215-223
Author(s):  
Yuhong Cao ◽  
Meiyun Liu ◽  
Yuandan Cao ◽  
Chen Chen ◽  
Dapeng Zhang

The construction land includes the urban land, rural residential areas and other construction land. The Wanjiang City Belt along the Yangtze River is an important demonstration area for undertaking industrial transfer in China. With the accumulation of factors relative to economic development, the construction land has increased sharply, and the regional ecological security pattern is facing new challenges. After collecting the image interpretation data of multi-period land use of the Wanjiang City Belt, the work studied the characteristics of construction land change pattern since 1995 and its driving mechanism based on the GIS platform, land use transfer matrix, expansion intensity index, hotspot analysis and mathematical statistics. The results showed that: (1) From 1995 to 2015, the urban land and other construction land in the Wanjiang City Belt have increased, but the rural residential areas decreased in 2010-2015. The three types of land had the largest changes in 2005-2010 and the change in the other construction land was particularly prominent. (2) The hotspots for construction land expansion are mainly in urban areas with rapid economic development such as Hefei, Wuhu, Ma’anshan and Tongling, where the land use changes most severely. (3) The driving factors for the change of construction land area include natural and social factors. Among social and economic factors, the GDP, industrial added value, secondary output value and urbanization rate are the main driving forces for changes. In the past 20 years, the construction of China’s Undertaking Industrial Transfer Demonstration Area has changed the land optimal allocation and intensive use mode in the region, providing the basis for resource development and utilization, economic development and industrial structure adjustment.


2019 ◽  
Vol 9 (6) ◽  
pp. 1116 ◽  
Author(s):  
Feng Wang ◽  
Mengnan Gao ◽  
Juan Liu ◽  
Yuhui Qin ◽  
Ge Wang ◽  
...  

Urbanization is an important factor in the growth of carbon emissions, as the city is a dense area of carbon emissions. This paper estimates the carbon emissions at the provincial, municipal, and county spatial scales in the Yangtze River Delta region during 2008–2015. On this basis, this paper makes a comprehensive analysis of the pathway and difference of the urbanization to the carbon emission by using the scale variance decomposition method, the space correlation analysis method, the mediation effect test method, and the space panel data model. The results show that the urbanization of the Yangtze River Delta has a significant positive impact on carbon emissions; The pathway from urbanization to industrial structure has a significant impact on carbon emissions. Although the pathway from industrial structure to urbanization to carbon emissions is insignificant, the industrial structure directly affects carbon emissions. There is a significant path from urbanization to the level of economic development to carbon emissions, but there is no mechanism for the economic development level to adversely affect the level of urbanization and thus affect carbon emissions; the chain action pathway from the urbanization level to the employment level to the economic development level to carbon emissions is not significant. Finally, based on the research conclusions, the corresponding policy recommendations are submitted.


Author(s):  
Wei Zhao ◽  
Xuan Liu ◽  
Qingxin Deng ◽  
Dongyang Li ◽  
Jianing Xu ◽  
...  

China is urbanizing rapidly, but current research into the spatiotemporal characteristics of urbanization often ignores the spatial and evolutionary associations of cities. Using the theory of spatial polarization and diffusion, together with a systematic analysis method, this study examined the spatial development process of urbanization in the Yangtze River Delta (YRD) region of China during 1995–2015. Results showed clear patterns in the scale and hierarchy of regional urbanization. Shanghai ranked first as the regional growth pole, while Nanjing, Hangzhou, and Suzhou ranked second. The spatial linkage index of urbanization showed that 10 cities (including Shanghai, Suzhou, and Hangzhou) constituted the densest spatial linkage network. The diffused area often became spatially polarized before the polarization then weakened as a new diffusion stage developed. The study also revealed that the spatial correlation urbanization differences in the YRD generally decreased. The polarization index revealed increasing spatial integration and correlation of urbanization in the YRD. This study proved that each city had a different spatial role in relation to other cities during different stages of development. Investigation of the driving mechanism of regional urbanization indicated that industrial modernization and relocation within the region provided the main endogenous driving force for the formation of spatial polarization or diffusion. Our research provides important scientific support for regional development planning. Furthermore, our analysis of the impact of spatial correlation within cities or a region could provide an important reference in relation to the regional environment and public health.


2021 ◽  
Vol 13 (5) ◽  
pp. 2722
Author(s):  
Shijian Wu ◽  
Kaili Zhang

Reducing carbon emissions and realizing green, circular, and low-carbon development is essential for high-quality economic development. Following the construction of a superefficiency SBM model and combining the panel data of three major urban agglomerations in the Yangtze River Economic Belt from 2003 to 2017, carbon emission efficiency was measured and analyzed. A spatial Durbin model (SDM) was incorporated to analyze the urban agglomerations in the Yangtze River Economic Belt and the impact of urbanization quality and foreign direct investment (FDI) on carbon emission efficiency. Finally, the SDM model was used to decompose the spillover effect. Generally, carbon emission efficiency in the three major urban agglomerations in the Yangtze River Economic Belt is low, with regional differences. FDI only has a positive impact on the carbon emissions of the Yangtze River Delta and the middle reaches of the Yangtze River. Furthermore, urbanization and population density have led to high levels of carbon emission in the region; however, the industrial structure and energy intensity factors have inhibited the improvement of regional carbon emission efficiency. Improving the quality of urbanization and trade structure is important to achieve energy conservation and emission reductions, which are pillars of sustainable economic development.


2019 ◽  
Vol 11 (23) ◽  
pp. 6623 ◽  
Author(s):  
Peng ◽  
Huang ◽  
Elahi ◽  
Wei

The vulnerability of ecological environment threatens social and economic development. Recent studies failed to reveal the driving mechanism behind it, and there is little analysis on the spatial clustering characteristics of the vulnerability of urban agglomerations. Therefore, this article estimates ecological environment vulnerability in 2005, 2011, and 2017, determines Moran Index (MI) with spatial autocorrelation model, analyzes the spatial-temporal difference characteristics of ecological environment vulnerability of Yangtze River Urban Agglomeration and the spatial aggregation effect, and discusses its driving factors. The study results estimate that the overall vulnerability index of the Yangtze River Urban Agglomeration is in a mild fragile state. However, most fragile and slightly fragile cities are developing in the direction of moderate to severe vulnerability. The spatial agglomeration effect of the ecological environment vulnerability of the Yangtze River Urban Agglomeration is not obvious, and the effect of mutual ecological environment influence among cities is not obvious. Moreover, the driving factors of ecological environment vulnerability of Yangtze River city group changed from natural factors to social economic factors and then to policy factors. It is necessary to develop an ecological economy, coordinate the spatial agglomeration of urban agglomerations, and make balance the internal differences of urban agglomerations.


Author(s):  
Jin-Wei Yan ◽  
Fei Tao ◽  
Shuai-Qian Zhang ◽  
Shuang Lin ◽  
Tong Zhou

As part of one of the five major national development strategies, the Yangtze River Economic Belt (YREB), including the three national-level urban agglomerations (the Cheng-Yu urban agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration (YRMR-UA), and the Yangtze River Delta urban agglomeration (YRD-UA)), plays an important role in China’s urban development and economic construction. However, the rapid economic growth of the past decades has caused frequent regional air pollution incidents, as indicated by high levels of fine particulate matter (PM2.5). Therefore, a driving force factor analysis based on the PM2.5 of the whole area would provide more information. This paper focuses on the three urban agglomerations in the YREB and uses exploratory data analysis and geostatistics methods to describe the spatiotemporal distribution patterns of air quality based on long-term PM2.5 series data from 2015 to 2018. First, the main driving factor of the spatial stratified heterogeneity of PM2.5 was determined through the Geodetector model, and then the influence mechanism of the factors with strong explanatory power was extrapolated using the Multiscale Geographically Weighted Regression (MGWR) models. The results showed that the number of enterprises, social public vehicles, total precipitation, wind speed, and green coverage in the built-up area had the most significant impacts on the distribution of PM2.5. The regression by MGWR was found to be more efficient than that by traditional Geographically Weighted Regression (GWR), further showing that the main factors varied significantly among the three urban agglomerations in affecting the special and temporal features.


Sign in / Sign up

Export Citation Format

Share Document