scholarly journals Jumping Wave Characteristic during Low Plasticity Burnishing Process

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1441
Author(s):  
Stefan Dzionk ◽  
Michal Dobrzynski ◽  
Bogdan Ścibiorski

During the low plasticity burnishing process of soft materials such as carbon steel with a hardness of up to 40 HRC (Rockwell grade) a raised structure of the material known as the Jumping Wave forms in front of the tool roll. This phenomenon significantly disturbs the burnishing process, but is very poorly described in the literature. This article presents studies of this phenomenon on the example of burnished 1.0562 steel. The research concerns the changes in the surface structure of the processed material as well as changes in the structure of the material during this process. The research shows changes in the geometric structure of the surface made in the 3D system and their parametric description. Moreover, the work presents an analysis of the metallographic structure in the tool zone. The research showed occurrence of material slippages in the wave in front of the tool, which creates an additional structure on the surface. These tests make it possible to better understand the process of changes that take place in the surface layer of the processed element in the low plasticity burnishing process.

1946 ◽  
Vol 30 (1) ◽  
pp. 47-59 ◽  
Author(s):  
W. J. V. Osterhout

The experiments indicate that the protoplasm of Nitella consists of an aqueous layer W with an outer non-aqueous surface layer X and an inner non-aqueous surface layer Y. The potential at Y is measured by the magnitude of the action curve and the potential at X by the distance from the top of the action curve to the zero line. These potentials appear to be due chiefly to diffusion potentials caused by the activity gradients of KCl across the non-aqueous layers X and Y. The relative mobilities of K+ and Cl- in X and in Y can be computed and an estimate of the activity of KCl in W can be made. In the complete resting state the mobilities of K+ and Cl- in X are not very different from those in Y. The action curve is due to changes in Y which suddenly becomes very permeable, allowing potassium to move from the sap across Y into W, and thus losing its potential. A gradual loss may be due to changes in ionic mobility in Y. When recovery is incomplete and Y has not yet regained its normal potential a stimulus may cause a loss of the potential at Y giving an action curve of small magnitude. The magnitude may vary in successive action curves giving what is called a complex pattern in contrast to the simple pattern observed when recovery is complete and all the action curves are alike. Complex patterns occur chiefly in cells treated with reagents. Untreated cells usually give simple patterns. A variety of complex action patterns is discussed. It is evident that the cells of Nitella show much more variation than such highly specialized cells as muscle and nerve which give stereotyped responses. In some cases it may be doubtful whether the all-or-none law holds.


2014 ◽  
Vol 14 (3) ◽  
pp. 25-28
Author(s):  
R. Haratym ◽  
M. Sieczka ◽  
R. Biernacki ◽  
J. Kwapisz

Abstract This research presents comprehensive assessment of the precision castings quality made in the Replicast CS process. The evaluation was made based on quality of the surface layer, shape errors and the accuracy of the linear dimensions. Studies were carried out on the modern equipment, among other things a Zeiss Calypso measuring machine and profilometer were used. Obtained results allowed comparing lost wax process models and Replicast CS process.


Author(s):  
Anand Sharma ◽  
M.S. Niranjan

Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF process used for achieving nano-level finishing of soft materials and the advancements made in this process


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5844
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepieciński ◽  
Leon Kukiełka ◽  
Piotr Paszta ◽  
Paweł Maciąg ◽  
...  

The article presents the results of investigations into the depth of the plastically deformed surface layer in the roller burnishing process. The investigation was carried out in order to obtain information on the dependence relationship between the depth of plastic deformation, the pressure on the roller and the braking torque. The research was carried out according to the original method developed by the authors, in which the depth of plastic deformation is increased by applying a braking torque to the burnishing roller. In this method, it is possible to significantly increase (up to 20%) the depth of plastic deformation of the surface layer. The tests were carried out on a specially designed device on which the braking torque can be set and the force of the rolling resistance of the roller during burnishing can be measured. The tests were carried out on specimens made of C45 heat-treatable carbon steel. The dependence of the depth of the plastically deformed surface layer was determined for a given pressure force and variable braking moments. The depth of the plastically deformed layer was measured on the deformed end face of the ring-shaped samples. The microhardness in the sample cross-section and the evolution of the microstructure were both analysed.


2013 ◽  
Vol 199 ◽  
pp. 117-122
Author(s):  
Wojciech Labuda ◽  
Adam Charchalis

The article presents the research results referring to the analysis of the influence of finish treatment ( lathing, grinding, burnishing) on the contact fatigue of steel applied to marine pump shafts. The research was performed on a roller 40 mm in diameter made of 304L stainless steel. Within the research, the optimalization of burnishing technological parameters was conducted on account of the minimalization of Ra surface roughness coefficient as well as the maximalization of SU degree of surface layer relative hardness [. The multi criteria optimalization conducted by min-max method [ with regard to minimum surface roughness as well as maximum degree of surface layer hardness demonstrated that burnishing process should be carried out at the following technological parameters: burnishing force 1.1 kN, burnishing speed 35 m/min, feed 0.13 mm/rev. In addition, the influence of the burnisher passes number on the surface layer quality was determined [.The paper will present the research results of contact fatigue examination of samples after finish machining.


2017 ◽  
Vol 746 ◽  
pp. 290-295 ◽  
Author(s):  
Aleksei Nicolaevich Shvetcov ◽  
Dmitrii Leonidovich Skuratov

The article shows the results of experimental investigation influence of process conditions on parameters, defining plastic deformation, during diamond burnishing process: maximum of micro-hardness and depth of hardened layer (depth of workhardening). Empirical dependences, linking the maximum of micro-hardness and depth of workhardening to the diamond burnishing process parameters, were obtained on the base of the experimental investigation.


1952 ◽  
Vol 9 (7) ◽  
pp. 325-328 ◽  
Author(s):  
H. B. Hachey

On the basis of temperature observations made in the Great Lakes in the summer months it has been shown that: (a) the maximum depth of the thermocline does not exceed 50 feet, (b) the temperature gradient within the thermocline may be as much as 26 degrees Fahrenheit in 10 feet, (c) the thickness of the surface layer varies considerably with time and position, and can under certain circumstances be entirely removed from an area, and (d) the temperature of the deeper waters approximates to that of the maximum density of fresh water.


1970 ◽  
Vol 55 (6) ◽  
pp. 736-757 ◽  
Author(s):  
R. S. Eisenberg ◽  
E. Engel

A theoretical analysis is presented of the change in membrane potential produced by current supplied by a microelectrode inserted just under the membrane of a spherical cell. The results of the analysis are presented in tabular and graphic form for three wave forms of current: steady, step function, and sinusoidal. As expected from physical reasoning, we find that the membrane potential is nonuniform, that there is a steep rise in membrane potential near the current microelectrode, and that this rise is of particular importance when the membrane resistance is low, or the membrane potential is changing rapidly. The effect of this steep rise in potential on the interpretation of voltage measurements from spherical cells is discussed and practical suggestions for minimizing these effects are made: in particular, it is pointed out that if the current and voltage electrodes are separated by 60°, the change in membrane potential produced by application of current is close to that which would occur if there were no spatial variation of potential. We thus suggest that investigations of the electrical properties of spherical cells using two microelectrodes can best be made when the electrodes are separated by 60°.


Sign in / Sign up

Export Citation Format

Share Document