scholarly journals Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7813
Author(s):  
Saima Qureshi ◽  
Goran M. Stojanović ◽  
Mitar Simić ◽  
Varun Jeoti ◽  
Najeebullah Lashari ◽  
...  

Wearable sensors have become part of our daily life for health monitoring. The detection of moisture content is critical for many applications. In the present research, textile-based embroidered sensors were developed that can be integrated with a bandage for wound management purposes. The sensor comprised an interdigitated electrode embroidered on a cotton substrate with silver-tech 150 and HC 12 threads, respectively, that have silver coated continuous filaments and 100% polyamide with silver-plated yarn. The said sensor is a capacitive sensor with some leakage. The change in the dielectric constant of the substrate as a result of moisture affects the value of capacitance and, thus, the admittance of the sensor. The moisture sensor’s operation is verified by measuring its admittance at 1 MHz and the change in moisture level (1–50) µL. It is observed that the sensitivity of both sensors is comparable. The identically fabricated sensors show similar response and sensitivity while wash test shows the stability of sensor after washing. The developed sensor is also able to detect the moisture caused by both artificial sweat and blood serum, which will be of value in developing new sensors tomorrow for smart wound-dressing applications.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 703
Author(s):  
Sung-Gu Kang ◽  
Min-Su Song ◽  
Joon-Woo Kim ◽  
Jung Woo Lee ◽  
Jeonghyun Kim

Near-field communication (NFC) is a low-power wireless communication technology used in contemporary daily life. This technology contributes not only to user identification and payment methods, but also to various biomedical fields such as healthcare and disease monitoring. This paper focuses on biomedical applications among the diverse applications of NFC. It addresses the benefits of combining traditional and new sensors (temperature, pressure, electrophysiology, blood flow, sweat, etc.) with NFC technology. Specifically, this report describes how NFC technology, which is simply applied in everyday life, can be combined with sensors to present vision and opportunities to modern people.


2021 ◽  
Author(s):  
Sandra Michel-Souzy ◽  
Naomi M. Hamelmann ◽  
Sara Zarzuela-Pura ◽  
Jos M. J. Paulusse ◽  
Jeroen J. L. M. Cornelissen

Encapsulin based protein cages are nanoparticles with different biomedical applications, such as targeted drug delivery or imaging agents. These particles are biocompatible and can be produced in bacteria, allowing large scale production and protein engineering. In order to use these bacterial nanocages in different applications, it is important to further explore the potential of their surface modification and optimize their production. In this study we design and show new surface modifications of the Thermotoga maritima (Tm) and Brevibacterium linens (Bl) encapsulins. Two new loops on Tm encapsulin with a His-tag insertion after the residue 64 and the residue 127, and the modification of the C-terminal on Bl encapsulin, are reported. The multi-modification of the Tm encapsulin enables up to 240 different functionalities on the cage surface, resulting from 4 potential modifications per protein subunit. We furthermore report an improved protocol giving a better stability and providing a notable increase of the production yield of the cages. Finally, we tested the stability of different encapsulin variants over a year and the results show a difference in stability arising from the tag insertion position. These first insights in the structure-property relationship of encapsulins, with respect to the position of a function loop, allow for further study of the use of these protein nanocages in biomedical applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1089
Author(s):  
Beomjin Park ◽  
Semi Yoon ◽  
Yonghyun Choi ◽  
Jaehee Jang ◽  
Soomin Park ◽  
...  

A micro/nanobubble (MNB) refers to a bubble structure sized in a micrometer or nanometer scale, in which the core is separated from the external environment and is normally made of gas. Recently, it has been confirmed that MNBs can be widely used in angiography, drug delivery, and treatment. Thus, MNBs are attracting attention as they are capable of constructing a new contrast agent or drug delivery system. Additionally, in order to effectively use an MNB, the method of securing its stability is also being studied. This review highlights the factors affecting the stability of an MNB and the stability of the MNB within the ultrasonic field. It also discusses the relationship between the stability of the bubble and its applicability in vivo.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1774 ◽  
Author(s):  
Haoran Zhang ◽  
Juntao Zhao ◽  
Tieling Xing ◽  
Shenzhou Lu ◽  
Guoqiang Chen

Silk fibroin (SF) is a natural material with good biocompatibility and excellent mechanical properties, which are complementary to graphene with ultrahigh electrical conductivity. In this study, to maximally combine graphene and silk fibroin, a well-dispersed silk fibroin/graphene suspension was successfully prepared in a simple and effective way. Then we prepared a flexible conductive SF/graphene film with a minimum resistance of 72.1 ± 4.7 Ω/sq by the casting method. It was found that the electrical conductivity of the SF/graphene film was related to the water content of the film, and the variation was more than 200 times. Therefore, it will play an important role in the field of humidity sensors. It also has excellent mechanical properties in both wet and dry states. These unique features make this material a promising future in the fields of biomedical applications, wearable sensors, and implantable internal sensors.


2007 ◽  
Vol 342-343 ◽  
pp. 781-784 ◽  
Author(s):  
Han Hee Cho ◽  
Kazuaki Matsumura ◽  
Naoki Nakajima ◽  
Dong Wook Han ◽  
Sadami Tsutsumi ◽  
...  

Stabilization of the fibrous protein collagen is important in biomedical applications. This study investigated the efficacy of degradation control of collagen using (-)-epigallocatechin-3-Ogallate (EGCG). EGCG treatment of collagen in solid state was carried out and collagen sponges produced were characterized by measuring the physicochemical properties such as gel fraction, the enzymatic degradability and cytocompatibility. According to gel fraction, EGCG-treated sponges showed the increase of insolubility compared to intact sponges. It showed that EGCG played a role in a crosslinker of collagen. Through in vitro enzymatic degradation test, EGCG-treated collagen sponges showed significant enhancement of resistance to collagenase in comparison with 25 mM EDC-treated collagen sponges. Also, cell proliferation assays showed that 40 mM EGCG-treated collagen sponges exhibited similar cytocompatibility properties compared with tissue culture plate. In summary, EGCG treatment of collagen sponges increased the stability of collagen. Therefore, crosslinking of collagen based scaffold with EGCG imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications.


Author(s):  
Fadi Alsaleem ◽  
Mohammad I. Younis

In this work, we investigate the stability and integrity of parallel-plate microelectromechanical systems resonators using a delayed feedback controller. Two case studies are investigated: a capacitive sensor made of cantilever beams with a proof mass at their tip and a clamped-clamped microbeam. Dover-cliff integrity curves and basin-of-attraction analysis are used for the stability assessment of the frequency response of the resonators for several scenarios of positive and negative gain in the controller. It is found that in the case of a positive gain, a velocity or a displacement feedback controller can be used to effectively enhance the stability of the resonators. This is confirmed by an increase in the area of the basin of attraction of the resonator and in shifting the Dover-cliff curve to higher values. On the other hand, it is shown that a negative gain can significantly weaken the stability and integrity of the resonators. This can be of useful use in MEMS for actuation applications, such as in the case of capacitive switches, to lower the activation voltage of these devices and to ensure their trigger under all initial conditions.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1170
Author(s):  
Caroline S. A. de Lima ◽  
Justine P. R. O. Varca ◽  
Kamila M. Nogueira ◽  
Gabriela N. Fazolin ◽  
Lucas F. de Freitas ◽  
...  

Papain is a therapeutic enzyme with restricted applications due to associated allergenic reactions. Papain nanoparticles have shown to be safe for biomedical use, although a method for proper drug loading and release remains to be developed. Thus, the objective of this work was to develop and assess the stability of papain nanoparticles in a prototype semi-solid formulation suitable for dermatological or topical administrations. Papain nanoparticles of 7.0 ± 0.1 nm were synthesized and loaded into carboxymethylcellulose- and poly(vinyl alcohol)-based gels. The formulations were then assayed for preliminary stability, enzyme activity, cytotoxicity studies, and characterized according to their microstructures and protein distribution. The formulations were suitable for papain nanoparticle loading and provided a stable environment for the nanoparticles. The enzyme distribution along the gel matrix was homogeneous for all the formulations, and the proteolytic activity was preserved after the gel preparation. Both gels presented a slow release of the papain nanoparticles for four days. Cell viability assays revealed no potential cytotoxicity, and the presence of the nanoparticles did not alter the microstructure of the gel. The developed systems presented a potential for biomedical applications, either as drug delivery systems for papain nanoparticles and/or its complexes.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3574 ◽  
Author(s):  
Juliana Padilha Leitzke ◽  
Tobias Mitterer ◽  
Hubert Zangl

In certain industrial processes, ice aggregations on surfaces can occur under almost vacuum conditions and at very low to cryogenic temperatures due to residual water molecules. This aggregation can affect the performance of the process and it is therefore of interest to monitor such surfaces. In this paper, we present a capacitive ice measurement system capable to operate in vacuum and temperatures of about - 120 ∘ C and below. We present a capacitive sensor setup with a separation of sensor element and sensor electronics, such that the sensor electronics can reside outside the cold environment. It is demonstrated that the permittivity of such ice formations at vacuum and low temperatures is sufficient for measurement using the proposed sensor configuration. Results from a long-term study using a prototype further demonstrate the stability of the system and thus the feasibility of the proposed system for long term condition monitoring of surfaces in vacuum that are e.g., cooled by cryogenic liquids. The developed system uses wireless communication in order to allow for simple retrofitting of existing infrastructure even in remote locations.


MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2373-2378 ◽  
Author(s):  
Sandra E. Nájera ◽  
Monica Michel ◽  
Nam-Soo Kim

ABSTRACTPolymer composites of Polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2) were developed for biomedical applications. These composite materials were prepared, and then printed using Fused Deposition Modeling (FDM). 3D printed structures were characterized to determine their mechanical properties and biocompatibility. DSC analysis yielded useful information regarding the immiscibility of the different polymers, and it was observed that the particles of TiO2 improved the stability of the polymers. The ultimate tensile strength and the fracture strain increased by adding TiO2 as a filler, resulting in values of approximately 45 MPa and 5.5 % elongation. The printed composites show excellent in vitro biocompatibility including cell proliferation and adhesion, and are therefore promising candidates to be used in the biomedical field for bone replacement procedures, due to their properties similar to those of cancellous bone.


Sign in / Sign up

Export Citation Format

Share Document