scholarly journals The Effect of Various Grinding Aids on the Properties of Cement and Its Compatibility with Acrylate-Based Superplasticizer

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 614
Author(s):  
Ewa Kapeluszna ◽  
Łukasz Kotwica

The influence of grinding aids (pure triethanolamine and ethylene glycol) on the properties of cements, their compatibility with an acrylate-based superplasticizer and the rheological parameters of mortars were investigated. The presence of surfactants influences the standard properties of cements and the effectiveness of the superplasticizer. The results of the heat of hydration and setting time measurements indicate a delay in the hydration process and an increase in the induction period duration of the surfactant-doped pastes, in relation to the reference sample without grinding aids. Triethanolamine increases early-age compressive strength; the effect was observed for both standard and superplasticizer-containing mortars. The presence of grinding aids decreases the slump flow of mortars and increases rheological parameters such as yield stress (τ0) and viscosity (η).

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5705
Author(s):  
Rubén Beltrán Cobos ◽  
Fabiano Tavares Pinto ◽  
Mercedes Sánchez Moreno

Crystalline admixtures are employed for waterproofing concrete. This type of admixtures can affect the early age performance of cement-based mixes. The electrical resistance properties of cement have been related to the initial setting time and to the hydration development. This paper proposes a system for remote monitoring of the initial setting time and the first days of the hardening of cement-based mortars to evaluate the effect of the incorporation of crystalline admixtures. The electrical resistance results have been confirmed by other characterization techniques such as thermogravimetric analysis and compressive strength measurements. From the electrical resistance monitoring it has been observed that the incorporation of crystalline admixtures causes a delay in the initial setting time and hydration processes. The measurements also allow to evaluate the influence of the amount of admixture used; thus, being very useful as a tool to define the optimum admixture dosage to be used.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740003 ◽  
Author(s):  
S. W. TANG ◽  
R. J. CAI ◽  
Z. HE ◽  
X. H. CAI ◽  
H. Y. SHAO ◽  
...  

This paper presents a preliminary work to evaluate the influence of slag and superplasticizer on the early-age hydration of cement pastes by an innovative non-contact impedance measurement, heat evolution method, compressive strength and setting time tests. Besides, the cumulative pore volume obtained from modulus and phase of impedance in different hydration sections is taken to continuously correlate the cumulative heat releasing of cement pastes via the fractal analysis. Retarded phenomena and mechanism of hydration in cement pastes incorporated with slag and superplasticizer are studied, respectively. It is found that the compressive strength and setting time have a good linear relation with the slag amount in blended cement pastes.


2019 ◽  
Vol 9 (9) ◽  
pp. 1809 ◽  
Author(s):  
Chen ◽  
Li ◽  
Chaves Figueiredo ◽  
Çopuroğlu ◽  
Veer ◽  
...  

The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, respectively, and one was the reference without calcined clay. In terms of extrudability, an extrusion test method based on the ram extruder was introduced to observe the quality of extruded material filaments, and to determine the extrusion pressure of tested materials at different ages. For evaluating the very early-age strength development, the penetration resistance test, the green strength test, and the ultrasonic pulse velocity test were applied. Furthermore, the mechanical properties of the developed mix designs were determined by the compressive strength test at 1, 7 and 28 days. Finally, the main finding of this study was that increasing the metakaolin content in calcined clay could significantly increase the extrusion pressures and green strength, shorten the initial setting time and enhance the compressive strength at 1, 7, and 28 days.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4794
Author(s):  
Dong Xu ◽  
Pingfeng Fu ◽  
Wen Ni ◽  
Qunhui Wang ◽  
Keqing Li

The use of ammonia soda residue (ASR) to prepare building materials is an effective way to dispose of ASR on a large scale, but this process suffers from a lack of data and theoretical basis. In this paper, a composite cementitious material was prepared using ASR and cement, and the hydration mechanism of cementitious materials with 5%, 10%, and 20% ASR was studied. The XRD and SEM results showed that the main hydration products of ASR-cement composite cementitious materials were an amorphous C-S-H gel, hexagonal plate-like Ca(OH)2 (CH), and regular hexagonal plate-like Friedel’s salt (FS). The addition of ASR increased the heat of hydration of the cementitious material, which increased upon increasing the ASR content. The addition of ASR also reduced the cumulative pore volume of the hardened paste, which displayed the optimal pore structure when the ASR content was 5%. In addition, ASR shortened the setting time compared with the cement group, and the final setting times of the pastes with 5%, 10%, and 20% ASR were 30 min, 45 min, and 70 min shorter, respectively. When the ASR content did not exceed 10%, the 3-day compressive strength of the mortar was significantly improved, but the 28-day compressive strength was worse. Finally, the hydration mechanism and potential applications of the cementitious material are discussed. The results of this paper promote the use of ASR in building materials to reduce CO2 emissions in the cement industry.


2018 ◽  
Vol 19 ◽  
pp. 1-11 ◽  
Author(s):  
Mehmet Serkan Kirgiz

This review research aims to discuss the results obtained researches on cement containing pure cement, pulverised fly ash, and nanoparticles, in order for eliminating negative side effects underlie the substitution of by–products for pure Portland cement. Nanoparticles (NP) used in these researches are nanoTiO2, nanoSiO2, nanoCaCO3, fibers of carbon nano tube (CNT), nanolimestone (nanoCaCO3), nanoZrO2, nanoclays, and nanometakaolin (nMK) for improving properties of cement systems. Published manuscripts explains two methods regarding on the usage of nanoparticles for cement system: blending and ultrasonication for dispersion of nanoparticles. However, differences between blending and ultrasonication methods suggested by various researchers are also discussed. Experiments reported these papers include the water demand, the density, the setting–times, the heat of hydration, the fluidity, the compressive strength and the flexural strength. According to these results, nanoparticles increase the water demand and heat of hydration of cement; it decreases the density and fluidity for cement mortars, evidently. The most effective nanoparticles on early compressive and flexural strengths are fibers of carbon nano tube and nanoCaCO3. These papers also point effects of these nanoparticles on the strength gain of cement. This review paper inform us until Effect of nanomaterial on water demand and density section in this Part I. Second part of this review paper will explain Hydration properties of Portland pulverised fly ash cement section, Effect of nanomaterial on setting–time section, Effect of nanomaterial on heat of hydration section, Strength gain mechanisms for hardened Portland pulverised fly ash cement paste and mortar section, Effect of nanomaterial on compressive strength section, Effect of nanomaterial on flexural strength (Bending) section, and Conclusion section.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1328
Author(s):  
In Kyu Jeon ◽  
Byeong Hun Woo ◽  
Dong Ho Yoo ◽  
Jae Suk Ryou ◽  
Hong Gi Kim

In this paper, the effect of nano-SiO2 (NS) and MgO on the hydration characteristics and anti-washout resistance of non-dispersible underwater concrete (UWC) was evaluated. A slump flow test, a viscosity test, and setting time measurement were conducted to identify the impacts of NS and MgO on the rheological properties of UWC. The pH and turbidity were measured to investigate the anti-washout performance of UWC mixes. To analyze the hydration characteristics and mechanical properties, hydration heat analysis, a compressive strength test, and thermogravimetric analyses were conducted. The experimental results showed that the fine particles of NS and MgO reduced slump flow, increased viscosity, and enhanced the anti-washout resistance of UWC. In addition, both NS and MgO shortened the initial and final setting times, and the replacement of MgO specimens slightly prolonged the setting time. NS accelerated the peak time and increased the peak temperature, and MgO delayed the hydration process and reduced the temperature due to the formation of brucite. The compressive results showed that NS improved the compressive strength of the UWC, and MgO slightly decreased the strength. The addition of NS also resulted in the formation of extra C–S–H, and the replacement of MgO caused the generation of a hydrotalcite phase.


2020 ◽  
Vol 19 (3) ◽  
pp. 407-421
Author(s):  
Yimmy Fernando Silva ◽  
◽  
David A. Lange ◽  
Silvio Delvasto ◽  
◽  
...  

This paper presents results of an experimental study of a residue of masonry (RM), sampled from a construction and demolition waste (CDW), added as a supplementary cementitious material (SCM) to partially replace up to 50% of Portland cement in the preparation of mortars. The pozzolanic activity (fixed lime and strength activity index), setting time, heat of hydration, the (autogenous and drying) shrinkage and compressive strength tests were carried out. The results show how the RM has a positive activity because the increase of RM replacement level in the mortars generates a lower heat of hydration and autogenous and drying shrinkage. The fixed lime at 28 and 180 days, indicating that the RM exhibits in some degree pozzolanic activity and the Strength Activity Index (SAI) was 77.13% and 84.36% of the compressive strength of 100% OPC mortar at the 7 and 28 days respectively, which conformed to ASTM C311. These results indicate that RM should be considered appropriated for using as a supplementary cementitious material.


2016 ◽  
Vol 14 (1) ◽  
pp. 176 ◽  
Author(s):  
Nelvi Irawati ◽  
Nilda Tri Putri ◽  
Alexie Herryandie Bronto Adi

Cement is a construction material with a specific quality that must be meet standard requirements and customer requirements. Through a good and continuous quality control, it will produce cement with consistent quality as its Quality Planning. Cement quality is calculated after adding water by measuring its setting time, compressive strength developing, heat of hydration, expantion/shrinkage, and its durability to environment effect. In cement application, primary parameter to determine cement quality is its compressive strength. Some factors that affect compressive strength of cement are reactivity and amount of Tricalcium Silicate (C3S) of Clinker, Clinker freelime (free CaO), amount of SO3 in Cement, amount of additional materials (insoluble residue/IR and loss on ignition/LOI), and sieve on 45 µm residue of cement. This research is intended to find how insoluble residue/IR, loss on ignition/LOI, and amount of SO3 will affect compressive strength of cement. Various percentages of IR, LOI, and SO3 in cement will result different compressive strength. Taguchi Method is applied to determine material proportion. With Orthogonal Array calculation for 3 factors and 4 levels, it will result 16 calculation running times (L16 4**3). In laboratory scale, cement for this research has been being manufactured and then its compressive strength for 3 days, 7 days, and 28 days will be measured. Determination of optimal proportion will be calculated by statistic method for higher compressive strength and lower manufacturing cost. Keywords: compressive strenght, cement, taguchi method, proportionAbstrak Semen merupakan bahan konstruksi yang memerlukan kualitas yang sesuai dengan permintaan konsumen dan memenuhi persyaratan standar. Melalui pengendalian kualitas yang baik dan dilakukan secara terus menerus akan diperoleh kualitas semen yang stabil dan sesuai dengan perencanaan kualitas (Quality Planning). Kualitas semen diukur, berdasarkan performansinya saat penambahan air, yaitu bagaimana proses pengikatan semen, perkembangan kuat tekan, panas hidrasi, pemuaian/penyusutan volume dan ketahanan semen terhadap pengaruh lingkungan (durability). Dalam praktek pemakaian semen di lapangan, parameter utama untuk menentukan kualitas semen adalah parameter kuat tekan. Beberapa faktor yang mempengaruhi kuat tekan semen adalah reaktivitas dan jumlah trikalsium silikat (C3S) klinker, freelime klinker (CaO bebas), jumlah SO3 dalam semen, jumlah material tambahan (BTL dan LOI) dan kehalusan semen dalam sieve on 45 µm. Pada paper ini akan meneliti faktor yang mempengaruhi kuat tekan semen yaitu parameter BTL, LOI dan SO3. Variasi prosentase parameter BTL, LOI dan SO3 dalam semen akan mempengaruhi pencapaian kuat tekan. Penentuan proporsi material yang akan diteliti menggunakan metode Taguchi. Dengan perhitungan Orthogonal Array untuk 3 faktor dan 4 tingkatan level diperoleh jumlah penelitian yang dilakukan adalah 16 kali (L16 4**3). Pada saat ini sedang dilakukan pembuatan semen skala Laboratorium dan dilanjutkan dengan pengujian kuat tekan semen pada umur 3 hari, 7 hari dan 28 hari. Penentuan proporsi optimal dihitung secara metoda statistika untuk kuat tekan tinggi dan biaya produksi yang rendah.Kata kunci: kuat tekan, semen, metoda taguchi, proporsi


Sign in / Sign up

Export Citation Format

Share Document