scholarly journals Microstructure and Magnetic Properties of Ce14Fe78Co2B6 Nanopowders Prepared by Ball Milling at Low Temperature

2021 ◽  
Vol 7 (12) ◽  
pp. 160
Author(s):  
Marian Grigoras ◽  
Mihaela Lostun ◽  
Firuta Borza ◽  
Marieta Porcescu ◽  
George Stoian ◽  
...  

Ce14Fe78Co2B6 nanopowders with hard-magnetic properties have been successfully prepared by ball milling at low temperatures in liquid nitrogen. The morphology, structure, and magnetic properties of Ce14Fe78Co2B6 powders have been investigated using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. It was found that powder ball milling at low temperature in liquid nitrogen, has the advantage that the oxidation of powders is inhibited and the particles rapidly reach nanometric dimensions. In comparison to the Ce14Fe78Co2B6 powders prepared by ball milling at room temperature, the powders milled at low temperature present a more uniform particle size and no rare-earth oxides, which leads thus to remarkable magnetic properties. The nanocrystalline Ce14Fe78Co2B6 powders with optimum characteristics, prepared at low temperature, have the size of 153 nm or less, present a coercivity of 5.1 kOe, and a saturation magnetization of 113 emu/g after milling for 6 h at low temperature. Low temperature milling may become a promising technique for the fabrication of high performance powders used for permanent magnets preparation.

2014 ◽  
Vol 493 ◽  
pp. 656-660 ◽  
Author(s):  
Widyastuti ◽  
Endah Kharismawati ◽  
M. Zainuri ◽  
Hosta Ardhyananta

Barium hexaferrite (BaFe12O19) with hexagonal structure has been known as the high performance magnetic for Radar Absorber Material (RAM). Barium hexaferrite (BaM) was synthesized by sol gel auto combustion to get an homogeneous nanoparticle of BaM. Barium hexaferrites obtained from solution mixture between barium nitrate and ferri nitrate nonahidrat with precipitation of ion barium (Ba2 +) and ferri (Fe3 +) by solution of sodium hydroxide. Sample prepared with mol ratio of Fe / Ba 11 then added ammoniac in order that pH varies become 7,5; 9; and 11. Citric acid added in order that happen process of combustion. The stirring time was varieties by 1, 2, 3 hours. The effect of pH, stirring time, microstructure, phase,and magnetic properties were investigated using X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and a vibrating sample magnetometer (VSM). The results showed that the highest coercivity was 0.6 Tesla and the smallest crystal size 414.409 nm was obtained for pH 7.5 and stirring time 2 hours. The largest magnetic saturation 55.54 emu /g was reached for pH 7.5 with stirring time 1 hour


2011 ◽  
Vol 83 (11) ◽  
pp. 2071-2077 ◽  
Author(s):  
Kaliyan Vallal Peruman ◽  
Manickam Mahendran

The off-stoichiometric Ni2MnGa ferromagnetic alloys are one of the active materials that are of great interest when they are ball milled into nanopowder. These powders are prospective materials for nanosystem applications. However, the properties of the nano-crystalline Ni–Mn–Ga alloys depend strongly on their structure and internal stress, which develop during the milling process. Ni–Mn–Ga nanoparticles were prepared by ball-milling method, and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. The powders are found to be a disordered mixture structure of austenite and martensite. We calculated that an average internal stress is 0.28 to 2.05 MPa stored in the distorted lattice due to milling. Reduction in particle sizes is accompanied by increase of the lattice strain level when the milling time increases. The VSM reveals that magnetic saturation and coercivity decrease with increase of the milling duration. This phenomenon causes deterioration in the hard magnetic properties.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2010 ◽  
Vol 22 (21) ◽  
pp. 216005 ◽  
Author(s):  
Pablo Álvarez ◽  
Pedro Gorria ◽  
Victorino Franco ◽  
Jorge Sánchez Marcos ◽  
María J Pérez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document