scholarly journals Porous Medium Equation in Graphene Oxide Membrane: Nonlinear Dependence of Permeability on Pressure Gradient Explained

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 665
Author(s):  
Lukáš Mrazík ◽  
Pavel Kříž

Membrane performance in gas separation is quantified by its selectivity, determined as a ratio of measured gas permeabilities of given gases at fixed pressure difference. In this manuscript a nonlinear dependence of gas permeability on pressure difference observed in the measurements of gas permeability of graphene oxide membrane on a manometric integral permeameter is reported. We show that after reasoned assumptions and simplifications in the mathematical description of the experiment, only static properties of any proposed governing equation can be studied, in order to analyze the permeation rate for different pressure differences. Porous Medium Equation is proposed as a suitable governing equation for the gas permeation, as it manages to predict a nonlinear behavior which is consistent with the measured data. A coefficient responsible for the nonlinearity, the polytropic exponent, is determined to be gas-specific—implications on selectivity are discussed, alongside possible hints to a deeper physical interpretation of its actual value.

2021 ◽  
Vol 115 ◽  
pp. 106978
Author(s):  
Feida Jiang ◽  
Xinyi Shen ◽  
Hui Wu

Author(s):  
Gabriele Grillo ◽  
Giulia Meglioli ◽  
Fabio Punzo

AbstractWe consider the porous medium equation with a power-like reaction term, posed on Riemannian manifolds. Under certain assumptions on p and m in (1.1), and for small enough nonnegative initial data, we prove existence of global in time solutions, provided that the Sobolev inequality holds on the manifold. Furthermore, when both the Sobolev and the Poincaré inequalities hold, similar results hold under weaker assumptions on the forcing term. By the same functional analytic methods, we investigate global existence for solutions to the porous medium equation with source term and variable density in $${{\mathbb {R}}}^n$$ R n .


2012 ◽  
Vol 23 (04) ◽  
pp. 1250009 ◽  
Author(s):  
JEONGWOOK CHANG ◽  
JINHO LEE

We derive Harnack-type inequalities for non-negative solutions of the porous medium equation on a complete Riemannian manifold with non-negative Ricci curvature. Along with gradient estimates, reparametrization of a geodesic and time rescaling of a solution are key tools to get the results.


Sign in / Sign up

Export Citation Format

Share Document