scholarly journals Elioraea tepida, sp. nov., a Moderately Thermophilic Aerobic Anoxygenic Phototrophic Bacterium Isolated from the Mat Community of an Alkaline Siliceous Hot Spring in Yellowstone National Park, WY, USA

2021 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Mohit Kumar Saini ◽  
Shohei Yoshida ◽  
Aswathy Sebastian ◽  
Eri Hara ◽  
Hideyuki Tamaki ◽  
...  

Strain MS-P2T was isolated from microbial mats associated with Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, WY, USA. The isolate grows chemoheterotrophically by oxygen-dependent respiration, and light stimulates photoheterotrophic growth under strictly oxic conditions. Strain MS-P2T synthesizes bacteriochlorophyll a and the carotenoid spirilloxanthin. However, photoautotrophic growth did not occur under oxic or anoxic conditions, suggesting that this strain should be classified as an aerobic anoxygenic phototrophic bacterium. Strain MS-P2T cells are motile, curved rods about 0.5 to 1.0 μm wide and 1.0 to 1.5 μm long. The optimum growth temperature is 45–50 °C, and the optimum pH for growth is circum-neutral (pH 7.0–7.5). Sequence analysis of the 16S rRNA gene revealed that strain MS-P2T is closely related to Elioraea species, members of the class Alphaproteobacteria, with a sequence identity of 96.58 to 98%. The genome of strain MS-P2T is a single circular DNA molecule of 3,367,643 bp with a mol% guanine-plus-cytosine content of 70.6%. Based on phylogenetic, physiological, biochemical, and genomic characteristics, we propose this bacteriochlorophyll a-containing isolate is a new species belonging to the genus Elioraea, with the suggested name Elioraeatepida. The type-strain is strain MS-P2T (= JCM33060T = ATCC TSD-174T).

2007 ◽  
Vol 74 (4) ◽  
pp. 942-949 ◽  
Author(s):  
M. Kozubal ◽  
R. E. Macur ◽  
S. Korf ◽  
W. P. Taylor ◽  
G. G. Ackerman ◽  
...  

ABSTRACT Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP.


2004 ◽  
Vol 54 (6) ◽  
pp. 2353-2359 ◽  
Author(s):  
Tatyana G. Sokolova ◽  
Juan M. González ◽  
Nadezhda A. Kostrikina ◽  
Nikolai A. Chernyh ◽  
Tatiana V. Slepova ◽  
...  

A new anaerobic, thermophilic, facultatively carboxydotrophic bacterium, strain Nor1T, was isolated from a hot spring at Norris Basin, Yellowstone National Park. Cells of strain Nor1T were curved motile rods with a length of 2·6–3 μm, a width of about 0·5 μm and lateral flagellation. The cell wall structure was of the Gram-negative type. Strain Nor1T was thermophilic (temperature range for growth was 40–68 °C, with an optimum at 60 °C) and neutrophilic (pH range for growth was 6·5–7·6, with an optimum at 6·8–7·0). It grew chemolithotrophically on CO (generation time, 1·15 h), producing equimolar quantities of H2 and CO2 according to the equation CO+H2O→CO2+H2. During growth on CO in the presence of ferric citrate or amorphous ferric iron oxide, strain Nor1T reduced ferric iron but produced H2 and CO2 at a ratio close to 1 : 1, and growth stimulation was slight. Growth on CO in the presence of sodium selenite was accompanied by precipitation of elemental selenium. Elemental sulfur, thiosulfate, sulfate and nitrate did not stimulate growth of strain Nor1T on CO and none of these chemicals was reduced. Strain Nor1T was able to grow on glucose, sucrose, lactose, arabinose, maltose, fructose, xylose and pyruvate, but not on cellobiose, galactose, peptone, yeast extract, lactate, acetate, formate, ethanol, methanol or sodium citrate. During glucose fermentation, acetate, H2 and CO2 were produced. Thiosulfate was found to enhance the growth rate and cell yield of strain Nor1T when it was grown on glucose, sucrose or lactose; in this case, acetate, H2S and CO2 were produced. In the presence of thiosulfate or ferric iron, strain Nor1T was also able to grow on yeast extract. Lactate, acetate, formate and H2 were not utilized either in the absence or in the presence of ferric iron, thiosulfate, sulfate, sulfite, elemental sulfur or nitrate. Growth was completely inhibited by penicillin, ampicillin, streptomycin, kanamycin and neomycin. The DNA G+C content of the strain was 51·7±1 mol%. Analysis of the 16S rRNA gene sequence revealed that strain Nor1T belongs to the Bacillus–Clostridium phylum of the Gram-positive bacteria. On the basis of the studied phenotypic and phylogenetic features, we propose that strain Nor1T be assigned to a new genus, Thermosinus gen. nov. The type species is Thermosinus carboxydivorans sp. nov. (type strain, Nor1T=DSM 14886T=VKM B-2281T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1376-1382 ◽  
Author(s):  
Takao Iino ◽  
Koji Mori ◽  
Yoshihito Uchino ◽  
Tatsunori Nakagawa ◽  
Shigeaki Harayama ◽  
...  

A moderately thermophilic chemoheterotrophic bacterium, strain Mat9-16T, was isolated from microbial mats developed in hot spring water streams from Yumata, Nagano, Japan. Cells of strain Mat9-16T were strictly anaerobic, Gram-stain-negative, non-sporulating, non-motile and short to long rods (2.0–15.5 μm in length). Strain Mat9-16T grew fermentatively with optimum growth at 45 °C, pH 7.0–7.5 and 1 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene revealed that strain Mat9-16T was affiliated with an uncultivated lineage, and the nearest cultivated neighbours were green sulfur bacteria belonging to the class Chlorobea with 77–83 % sequence similarity. However, strain Mat9-16T could not grow phototrophically and did not possess light-harvesting structures, morphologically and genetically, such as the chlorosomes of green sulfur bacteria. On the basis of phenotypic features and phylogenetic position, a novel genus and species are proposed for strain Mat9-16T, to be named Ignavibacterium album gen. nov., sp. nov. (=NBRC 101810T =DSM 19864T). We also propose to place the cultivated bacterial lineage accommodating the sole representative Mat9-16T in a novel class, Ignavibacteria classis nov. In addition, we present a formal description of the phylum-level taxon ‘Chlorobi’ as Chlorobi phyl. nov.


2015 ◽  
Vol 81 (17) ◽  
pp. 5907-5916 ◽  
Author(s):  
Z. J. Jay ◽  
J. P. Beam ◽  
A. Dohnalkova ◽  
R. Lohmayer ◽  
B. Bodle ◽  
...  

ABSTRACTThermoproteales(phylumCrenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolatePyrobaculum yellowstonensisstrain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurringin situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for thede novosynthesis of nearly all required cofactors and metabolites were identified. The comparative genomics ofP. yellowstonensisand the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) toin situpopulations. The physiological attributes and metabolic capabilities ofP. yellowstonensisprovide an important foundation for developing an understanding of the distribution and function of these populations in YNP.


2015 ◽  
Vol 81 (11) ◽  
pp. 3834-3847 ◽  
Author(s):  
Matthew R. Urschel ◽  
Michael D. Kubo ◽  
Tori M. Hoehler ◽  
John W. Peters ◽  
Eric S. Boyd

ABSTRACTRates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available.


2013 ◽  
Vol 5 (12) ◽  
pp. 6587-6610 ◽  
Author(s):  
Cheryl Jaworowski ◽  
Henry Heasler ◽  
Christopher Neale ◽  
Sivarajan Saravanan ◽  
Ashish Masih

2019 ◽  
Vol 8 (44) ◽  
Author(s):  
Sydney Robertson ◽  
Robert F. Ramaley ◽  
Terry Meyer ◽  
John A. Kyndt

The genus Elioraea has only one species characterized microbiologically and two genomes sequenced. We have sequenced the genome of a unique Elioraea strain isolated from Yellowstone National Park and found it to be a distinct new species. Elioraea is suggested to be a member of the aerobic anoxygenic photosynthetic bacteria.


Geobiology ◽  
2016 ◽  
Vol 14 (3) ◽  
pp. 255-275 ◽  
Author(s):  
N. W. Fortney ◽  
S. He ◽  
B. J. Converse ◽  
B. L. Beard ◽  
C. M. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document