scholarly journals Effects of Ectomycorrhizal Fungi and Heavy Metals (Pb, Zn, and Cd) on Growth and Mineral Nutrition of Pinus halepensis Seedlings in North Africa

2020 ◽  
Vol 8 (12) ◽  
pp. 2033
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Abdenbi Zine El Abidine ◽  
...  

The pollution of soils by heavy metals resulting from mining activities is one of the major environmental problems in North Africa. Mycorrhizoremediation using mycorrhizal fungi and adapted plant species is emerging as one of the most innovative methods to remediate heavy metal pollution. This study aims to assess the growth and the nutritional status of ectomycorrhizal Pinus halepensis seedlings subjected to high concentrations of Pb, Zn, and Cd for possible integration in the restoration of heavy metals contaminated sites. Ectomycorrhizal and non-ectomycorrhizal P. halepensis seedlings were grown in uncontaminated (control) and contaminated soils for 12 months. Growth, mineral nutrition, and heavy metal content were assessed. Results showed that ectomycorrhizae significantly improved shoot and roots dry masses of P. halepensis seedlings, as well as nitrogen shoot content. The absorption of Pb, Zn, and Cd was much higher in the roots than in the shoots, and significantly more pronounced in ectomycorrhizal seedlings—especially for Zn and Cd. The presence of ectomycorrhizae significantly reduced the translocation factor of Zn and Cd and bioaccumulation factor of Pb and Cd, which enhanced the phytostabilizing potential of P. halepensis seedlings. These results support the use of ectomycorrhizal P. halepensis in the remediation of heavy metal contaminated sites.

2019 ◽  
Vol 37 ◽  
Author(s):  
M.J. KHAN ◽  
N. AHMED ◽  
W. HASSAN ◽  
T. SABA ◽  
S. KHAN ◽  
...  

ABSTRACT: Phytoremediation is a useful tool to restore heavy metals contaminated soils. This study was carried out to test two castor (Ricinus communis) cultivars [Local and DS-30] for phytoextraction of heavy metals from the soil spiked by known concentrations of seven metals (Cu, Cr, Fe, Mn, Ni, Pb and Zn). A pot experiment was laid out by using a completely randomized design. Soil and plant samples were analyzed at 100 days after planting. The data on heavy metal uptake by plant tissues (roots, leaves and shoots) of the two castor cultivars suggested that a considerable amount of metals (Fe = 27.18 mg L-1; Cu = 5.06 mg L-1; Cr = 2.95 mg L-1; Mn = 0.22 mg L-1; Ni = 4.66 mg L-1; Pb = 3.33 mg L-1; Zn = 15.04 mg L-1) was accumulated in the plant biomass. The soil heavy metal content at the end of experiment significantly decreased with both cultivars, resulting in improved soil quality. Therefore, it is concluded that both castor cultivars, Local and DS-30, can be used for phytoremediation of heavy metal-contaminated sites.


2020 ◽  
Vol 48 (4) ◽  
pp. 2095-2113
Author(s):  
Radu L. SUMALAN ◽  
Cornelia MUNTEAN ◽  
Ana KOSTOV ◽  
Daniel KRŽANOVIĆ ◽  
Noemi L. JUCSOR ◽  
...  

Heavy metal pollution, manifested by the accumulation, toxicity and persistence in soil, water, air, and living organisms, is a major environmental problem that requires energetic resolution. Mining tailing areas contain metal minerals such as Cu, Zn, Pb, Cr and Cd in high concentrations that pollute the environment and pose threats to human health. Phytoremediation represents a sustainable, long-term, and relatively inexpensive strategy, thus proving to be convenient for stabilizing and improving the environment in former heavy metal-polluted mining sites. This study presents the bioremediation potential of Silphium perfoliatum L. plants, in the vegetative stages of leaf rosette formation, grown on soil polluted with heavy metals from mining dumps in Moldova-Noua, in the Western part of Romania. The bioaccumulation factor (BAF), translocation factor (TF), metal uptake (MU) and removal efficiency (RE) of Cu, Zn, Cr and Pb by S. perfoliatum plants were determined in a potted experiment in controlled environmental conditions. The reference quantities of heavy metals have been determined in the studied soil sample. The experiment followed the dynamics of the translocation and accumulation of heavy metals in the soil, in the various organs of the silphium plants, during the formation of the leaf rosette (13-18 BBCH). The determination of the amount of heavy metals in soil and plants was achieved by the method of digestion with hydrochloric and nitric acid 3/1 (v/v) quantified by atomic absorption spectroscopy (AAS). The obtained experimental results demonstrate that the substrate has a high heavy metal content being at the alert threshold for Zn (260.01 mg kg-1 in substrate compared with alert threshold 300 mg kg-1) and at intervention thresholds for other metals (Cu -234.66 mg kg-1/200 mg kg-1; 299.08 mg kg-1/300 mg kg-1 and Pb-175.18 mg kg-1/100 mg kg-1). The average concentration of the metals determined in dynamics in the dry biomass of plants varied between roots, petioles, and laminas. The root is the main accumulator for Cu and Cr (Cu – 37.32 mg kg-1 -13 BBCH to 43.89 mg kg-1-15 BBCH and 80.71 mg kg-1 – 18 BBCH; Cr – 57.43 mg kg-1 – 13 BBCH to 93.36 mg kg-1 -18 BBCH), and for Zn and Pb the lamina seems to carry the same function. Preliminary results show that Silphium perfoliatum may be a viable alternative in the bioremediation and treatment of heavy metal-contaminated area.


2021 ◽  
Author(s):  
Michel Rodrigo Zambrano Passarini ◽  
Júlia Ronzella Ottoni ◽  
Paulo Emílio Santos Costa ◽  
Denise Cavalvante Hissa ◽  
Raul Maia Falcão ◽  
...  

Abstract The inappropriate disposal of toxic compounds generated by industrial activity has been impacting to the environment considerably. Microbial communities inhabiting contaminated sites may represent interesting ecological alternatives for the decontamination of environments. The present work aimed to investigate the fungal diversity inhabiting sediments from industrial waste containing heavy metals by using metagenomic approach. A total of twelve fungal orders were retrieved from datasets and, at phylum level, Ascomycota was the most abundant, followed by Basidiomycota, Chytridiomycota and Blastocladiomycota. Higher abundance of sequences was encountered within the less contaminated site, while the lower abundance was found in the sample with the higher contamination with lead. Gene sequences related to DNA repair and heavy metals biosorption processes were found in the four samples analyzed. The genera Aspergillus and Chaetomium, and Saccharomycetales order were highly present within all samples, showing their potential to be used for bioremediation studies. The present work demonstrated the importance of using the metagenomic approach to understand the dynamics of fungal communities and their behavior under heavy metal contamination, aiming the use in bioremediation processes of environments contaminated with heavy metals.


Author(s):  
Abhilash M.R ◽  
Srikantaswamy S ◽  
Shiva Kumar D

<div><p><em>Heavy metals are among the most important sorts of pollutant in the environment. Numerous methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. F</em><em>actors influencing heavy metal uptake by Crops were studied by pot and field experiments in Mysuru City, India. Results concern with soils is contaminated with Urban Wastewater. In this paper demonstrated effects on the heavy metal content of eight cultivated crop species, in three wastewater contaminated sites of Mysuru City. Interaction between ecological factors and crop characters was demonstrated, as well as results of pot and field studies were compared. Tested plant species were grouped on the basis of their accumulation capability and susceptibility of heavy metals.</em></p></div>


Author(s):  
Ivars Locis

The paper presents the issue of heavy metals in the different types of degraded territory in rural areas. For the test was chosen three different degraded territory: the former petrol station, the former farm mechanical workshop, the former farm cattle storage. All of three objects during operation were subjected to intensive polluting impact. They are included in the contaminated and potentially contaminated sites register. High concentrations of heavy metals in the soil of degraded territory is a factor that affects the planning for regeneration. Revitalization of contaminated sites and further use of them is possible only after the remediation works.


2020 ◽  
Author(s):  
Mohammad Fazel Soltani Gishini ◽  
Abolfazl Azizian ◽  
Abbas Alemzadeh ◽  
Marzieh Shabani ◽  
Seifollah Amin ◽  
...  

AbstractFew studies have evaluated the effects of various levels of heavy metals on medicinal plants. The impact of gradually increased soil levels of copper (Cu) and cadmium (Cd) on the medicinal plant native to Southwest Asia and North Africa, Prosopis farcta, irrigated with metal-enriched water was determined. The exposure of plants to Cd or Cu decreased plant growth and increased Cd and Cu concentration in their shoots and roots. External Cd or Cu in the soil increased the uptake of both elements. Regression analysis showed that the weight of both shoots and roots decreased linearly with the increase of Cu and Cd contents in roots and shoots. Results showed that Cd was more toxic than Cu. The water content of shoots and roots decreased linearly with increased heavy metal levels. P. farcta could take up Cu and Cd in both Cu- and Cd-contaminated soils, however, it was more capable for transporting Cd from roots to shoots rather than Cu. P. farcta is a natural accumulator for Cu and Cd under gradually increased levels of these metals in the soil.


2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Abdenbi Zine El Abidine ◽  
Mejda Abassi ◽  
Damase P. Khasa ◽  
...  

The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


2018 ◽  
Vol 3 (1) ◽  
pp. 414-426
Author(s):  
A.O. Adekiya ◽  
A.P. Oloruntoba ◽  
S.O. Ojeniyi ◽  
B.S. Ewulo

Abstract The study investigated the level of heavy metal contamination in plants {maize (Zea mays) and tomato (Solanum lycopersicum L.)} from thirty soil samples of three locations (Epe, Igun and Ijana) in the Ilesha gold mining area, Osun State, Nigeria. Total concentrations of As, Cd, Co, Cr, Cu, Ni, Pb and Zn were determined using atomic absorption spectrophotometry. Spatial variations were observed for all metals across the locations which was adduced to pH and the clay contents of the soils of each location. The results showed that heavy metals are more concentrated in the areas that are closer to the mining site and the concentrations in soil and plants (maize and tomato) decreased with increasing perpendicular distance from the mining site, indicating that the gold mine was the main sources of pollution. The mean concentrations of heavy metals in plants (tomato and maize) samples were considered to be contaminated as As, Cd and Pb respectively ranged from 0.6 - 2.04 mg kg-1, 0.8 - 5.2 mg kg-1, 0.8 - 3.04 mg kg-1 for tomato and respectively 0.60 - 2.00 mg kg-1, 1.50 - 4.60 mg kg-1 and 0.90 - 2.50 mg kg-1 for maize. These levels exceeded the maximum permissible limits set by FAO/WHO for vegetables. In conclusion, monitoring of crops for toxic heavy metals is essential for food safety in Nigeria.


2021 ◽  
Vol 16 (AAEBSSD) ◽  
pp. 77-85
Author(s):  
Sridevi Tallapragada ◽  
Rajesh Lather ◽  
Vandana ◽  
Gurnam Singh

Phytoremediation is the plant-based technology that has emerged as a novel cost effective and ecofriendly technology in which green plants are used for extraction, sequestration and/or detoxification of the pollutants. Plants possess the natural ability to degrade heavy metals and this property of plants to detoxify contaminants can be used by genetic engineering approach. Currently, the quality of soil and water has degraded considerably due heavy metal accumulation through discharge of industrial, agricultural and domestic waste. Heavy metal pollution is a global concern and a major health threat worldwide. They are toxic, and can damage living organisms even at low concentrations and tend to accumulate in the food chain. The most common heavy metal contaminants are: As, Cd, Cr, Cu, Hg, Pb and Zn. High levels of metals in soil can be phytotoxic, leading to poor plant growth and soil cover due to metal toxicity and can lead to metal mobilization in runoff water and thus have a negative impact on the whole ecosystem. Phytoremediation is a green strategy that uses hyperaccumulator plants and their rhizospheric micro-organisms to stabilize, transfer or degrade pollutants in soil, water and environment. Mechanisms used to remediate contaminated soil includes phytoextraction, phytostabilization, phytotransformation, phytostimulation, phytovolatilization and rhizofiltration. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and Arbuscular mycorrhizal fungi (AMF) inoculation has been applied to ameliorate the efficacy of plants for heavy metals decontamination. In this review, some recent innovative technologies for improving phytoremediation and heavy metals toxicity and their depollution procedures are highlighted.


Sign in / Sign up

Export Citation Format

Share Document