scholarly journals Silica Monolith for the Removal of Pollutants from Gas and Aqueous Phases

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1316
Author(s):  
Vanessa Miglio ◽  
Chiara Zaccone ◽  
Chiara Vittoni ◽  
Ilaria Braschi ◽  
Enrico Buscaroli ◽  
...  

This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10−2 mM Rhodamine B in water solution.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guotao Zhao ◽  
Zhenxiao Zhao ◽  
Junliang Wu ◽  
Daiqi Ye

Fluorine-containing hydrophobic mesoporous material (MFS) with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1and 0.74 cm3 g−1with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.


2017 ◽  
Vol 23 (3) ◽  
pp. 350-361 ◽  
Author(s):  
Hisham Al-Obaidi ◽  
Mridul Majumder ◽  
Fiza Bari

Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility.


Author(s):  
Johanna Rokka ◽  
Eva Schlein ◽  
Jonas Eriksson

Abstract Introduction [11C]UCB-J is a tracer developed for PET (positron emission tomography) that has high affinity towards synaptic vesicle glycoprotein 2A (SV2A), a protein believed to participate in the regulation of neurotransmitter release in neurons and endocrine cells. The localisation of SV2A in the synaptic terminals makes it a viable target for in vivo imaging of synaptic density in the brain. Several SV2A targeting compounds have been evaluated as PET tracers, including [11C]UCB-J, with the aim to facilitate studies of synaptic density in neurological diseases. The original two-step synthesis method failed in our hands to produce sufficient amounts of [11C]UCB-J, but served as an excellent starting point for further optimizations towards a high yielding and simplified one-step method. [11C]Methyl iodide was trapped in a clear THF-water solution containing the trifluoroborate substituted precursor, potassium carbonate and palladium complex. The resulting reaction mixture was heated at 70 °C for 4 min to produce [11C]UCB-J. Results After semi-preparative HPLC purification and reformulation in 10% ethanol/phosphate buffered saline, the product was obtained in 39 ± 5% radiochemical yield based on [11C]methyl iodide, corresponding to 1.8 ± 0.5 GBq at EOS. The radiochemical purity was > 99% and the molar activity was 390 ± 180 GBq/μmol at EOS. The product solution contained < 2 ppb palladium. Conclusions A robust and high yielding production method has been developed for [11C]UCB-J, suitable for both preclinical and clinical PET applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2475
Author(s):  
Amirah Shafilla Mohamad Kasim ◽  
Arbakariya Bin Ariff ◽  
Rosfarizan Mohamad ◽  
Fadzlie Wong Faizal Wong

Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.


2016 ◽  
Vol 49 (15) ◽  
pp. 5587-5598 ◽  
Author(s):  
Atul Kumar Dwivedi ◽  
Ravinder Singh ◽  
Ashutosh Singh ◽  
Kung-Hwa Wei ◽  
Chu-Ya Wu ◽  
...  

2016 ◽  
Vol 871 ◽  
pp. 96-103 ◽  
Author(s):  
Vladimir Erofeev ◽  
Aleksandr Bobryshev ◽  
Aleksandr Lakhno ◽  
Lenar Shafigullin ◽  
Ilnaz Khalilov ◽  
...  

Presents the results of studies of contemporary materials in the field of rheological state. The topological mortar structure has been provided by theoretical evaluation of the rheological state of the cross-linked solutions and the experimental viscosity data of the sand cement mortar which has been modified by water-soluble additive – polyoxyethylene. The general model has been made for the structure of non-Newtonian liquideous systems including dilatant, pseudoplastic bodies with two main rheological active components in their structure – rigid and viscous phases. It is shown that in pseudoplastic systems, as the shear stress increases, the viscous phase grows because of the reduction of rigid phase content. In dilatant systems the converse situation has been observed. Furthermore, these phases are not clearly distinguishable, but to the contrary they are spatially interconnected in a complex way. The structure modeling has been made for non-Newtonian bodies using the Shklovskii-de Gennes model. The studies have found that the construction composite sand cement system is defined as the pseudoplastic body where cement and sand act as the rigid phase, water solution of polyoxyethylene – as the viscous phase. These findings can be used to prove the influence of polymer powder on the workability of dry mortar.


2014 ◽  
Vol 692 ◽  
pp. 240-244
Author(s):  
Gong De Wu ◽  
Xiao Li Wang ◽  
Zhi Li Zhai

A series of transition metal alanine-salicylaldehyde Schiff base chromium (III) complexes immobilized on MCM-41 were prepared and characterized by various physico-chemical measurements such as FIIR, XRD, HRTEM, N2 sorption and elemental analysis. The immobilized complexes were effective and stable catalysts for the epoxidation of styrene and cyclohexene with 30% hydrogen peroxide. Moreover, the metal centers were found to play important roles in the catalytic performance of immobilized complex catalysts.


Sign in / Sign up

Export Citation Format

Share Document