scholarly journals The Development of Ru(II)-Based Photoactivated Chemotherapy Agents

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5679
Author(s):  
Yongjie Chen ◽  
Lijuan Bai ◽  
Pu Zhang ◽  
Hua Zhao ◽  
Qianxiong Zhou

Photoactivated chemotherapy (PACT) is a novel cancer treatment method that has drawn increasing attention due to its high selectivity and low side effects by spatio-temporal control of irradiation. Compared with photodynamic therapy (PDT), oxygen-independent PACT is more suitable for treating hypoxic tumors. By finely tuning ligand structures and coordination configurations, many Ru(II) complexes can undergo photoinduced ligand dissociation, and the resulting Ru(II) aqua species and/or free ligands may have anticancer activity, showing their potential as PACT agents. In this mini-review, we summarized the progress in Ru(II)-based PACT agents, as well as challenges that researchers in this field still face.

Author(s):  
Zhaoguo Han ◽  
xianshuang tu ◽  
Lina Qiao ◽  
Yige Sun ◽  
Zibo Li ◽  
...  

Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT) possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor...


2019 ◽  
Vol 20 (19) ◽  
pp. 4771 ◽  
Author(s):  
Dimakatso R. Mokoena ◽  
Blassan P. George ◽  
Heidi Abrahamse

Indisputably, cancer is a global crisis that requires immediate intervention. Despite the use of conventional treatments over the past decades, it is acceptable to admit that these are expensive, invasive, associated with many side effects and, therefore, a reduced quality of life. One of the most possible solutions to this could be the use of gold nanoparticle (AuNP) conjugated photodynamic therapy (PDT) in combination with cannabidiol (CBD), a Cannabis derivative from the Cannabis sativa. Since the use of Cannabis has always been associated with recreation and psychoactive qualities, the positive effects of Cannabis or its derivatives on cancer treatment have been misunderstood and hence misinterpreted. On the other hand, AuNP-PDT is the most favoured form of treatment for cancer, due to its augmented specificity and minimal risk of side effects compared to conventional treatments. However, its use requires the consideration of several physical, biologic, pharmacologic and immunological factors, which may hinder its effectiveness if not taken into consideration. In this review, the role of gold nanoparticle mediated PDT combined with CBD treatment on breast cancer cells will be deliberated.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Mickaël Tharaud ◽  
Gilles Gasser

<p>The currently used photodynamic therapy (PDT) photosensitizers (PSs) are generally associated with a poor cancer cell selectivity, which is responsible for some undesirable side effects. To overcome these problems, the use of selective drug delivery systems is currently envisioned. In this article, the encapsulation of a promising Ru(II) polypyridine complex-based PDT PS in a polymer with terminal folate groups to form nanoparticles is presented. While showing a high selectivity for cancerous cells over non-cancerous cells, the nanoparticles were found to be highly phototoxic in 2D monolayer cells as well as 3D multicellular tumor spheroids upon 480 nm or 595 nm irradiation. Promisingly, the nanoparticles were also active in drug resistant cancer cells lines, indicating that they are able to overcome drug resistances. <br></p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Gurcan Gunaydin ◽  
M. Emre Gedik ◽  
Seylan Ayan

Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4874
Author(s):  
Giftson J. Senapathy ◽  
Blassan P. George ◽  
Heidi Abrahamse

Worldwide, lung cancer remains one of the leading cancers with increasing mortality rates. Though chemotherapy for lung cancer is effective, it is always accompanied by unavoidable and grave side effects. Photodynamic therapy (PDT), using novel photosensitizers, is an advanced treatment method with relatively few side effects. Plant products are emerging as potent photosensitizers (PSs). The dose-dependent effect of Catechin (CA) (20–100 µM) on cellular morphological changes, cell viability, cytotoxicity, proliferation, DNA damage and apoptosis were studied on A549 adenocarcinoma alveolar basal epithelial cells. The effect of CA, along with Zinc phthalocyanine PS at 680 nm and 5 J/cm2 fluency was also studied. As the doses of CA increased, the results showed a pattern of increased cytotoxicity, accompanied by decreased cell viability and proliferation in A549 cells. Also, at 52 µM (IC50), CA in combination with PS significantly increased the cytotoxicity, DNA damage, and apoptosis, as compared to control and PS alone, treated cells in PDT experiments. These findings leave a possible thread that CA can be used in the application of phyto-photodynamic therapy of cancer in future.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Mickaël Tharaud ◽  
Gilles Gasser

<p>The currently used photodynamic therapy (PDT) photosensitizers (PSs) are generally associated with a poor cancer cell selectivity, which is responsible for some undesirable side effects. To overcome these problems, the use of selective drug delivery systems is currently envisioned. In this article, the encapsulation of a promising Ru(II) polypyridine complex-based PDT PS in a polymer with terminal folate groups to form nanoparticles is presented. While showing a high selectivity for cancerous cells over non-cancerous cells, the nanoparticles were found to be highly phototoxic in 2D monolayer cells as well as 3D multicellular tumor spheroids upon 480 nm or 595 nm irradiation. Promisingly, the nanoparticles were also active in drug resistant cancer cells lines, indicating that they are able to overcome drug resistances. <br></p>


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Sign in / Sign up

Export Citation Format

Share Document