scholarly journals Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4261
Author(s):  
Julia Kirstey Zakrzewski-Fruer ◽  
Claire Seall ◽  
Keith Tolfrey

With concerns that adolescent girls often skip breakfast, this study compared the effects of breakfast consumption versus breakfast omission on free-living physical activity (PA) energy expenditure (PAEE) and dietary intakes among adolescent girls classified as habitual breakfast skippers. The participants went through two 7-day conditions in a trial with a crossover design: daily standardised breakfast consumption (energy content: 25% of resting metabolic rate) before 09:00 (BC) and daily breakfast omission (no energy-providing nutrients consumed) until 10:30 (BO). Free-living PAEE, dietary intakes, and perceived appetite, tiredness, and energy levels were assessed. Analyses were linear mixed models. Breakfast manipulation did not affect PAEE or PA duration. Daily fibre intake was higher (p = 0.005; d = 1.31), daily protein intake tended to be higher (p = 0.092; d = 0.54), post-10:30 carbohydrate intake tended to be lower (p = 0.096; d = 0.41), and pre-10:30 hunger and fullness were lower and higher, respectively (p ≤ 0.065; d = 0.33–1.01), in BC versus BO. No other between-condition differences were found. Breakfast-skipping adolescent girls do not compensate for an imbalance in energy intake caused by breakfast consumption versus omission through subsequent changes in PAEE but may increase their carbohydrate intakes later in the day to partially compensate for breakfast omission. Furthermore, breakfast can make substantial contributions to daily fibre intake among adolescent girls.

2017 ◽  
Vol 118 (5) ◽  
pp. 392-400 ◽  
Author(s):  
Julia K. Zakrzewski-Fruer ◽  
Tatiana Plekhanova ◽  
Dafni Mandila ◽  
Yannis Lekatis ◽  
Keith Tolfrey

AbstractIt is not known if breakfast consumption is an effective intervention for altering daily energy balance in adolescents when compared with breakfast omission. This study examined the acute effect of breakfast consumption and omission on free-living energy intake (EI) and physical activity (PA) in adolescent girls. Using an acute randomised cross-over design, forty girls (age 13·3 (sd 0·8) years, BMI 21·5 (sd 5·0) kg/m2) completed two, 3-d conditions in a randomised, counter-balanced order: no breakfast (NB) and standardised (approximately 1962 kJ) breakfast (SB). Dietary intakes were assessed using food diaries combined with digital photographic records and PA was measured via accelerometry throughout each condition. Statistical analyses were completed using repeated-measures ANOVA. Post-breakfast EI was 483 (sd 1309) kJ/d higher in NB v. SB (P=0·025), but total daily EI was 1479 (sd 11311) kJ/d higher in SB v. NB (P<0·0005). Daily carbohydrate, fibre and protein intakes were higher in SB v. NB (P<0·0005), whereas daily fat intake was not different (P=0·405). Effect sizes met the minimum important difference of ≥0·20 for all significant effects. Breakfast manipulation did not affect post-breakfast macronutrient intakes (P≥0·451) or time spent sedentary or in PA (P≥0·657). In this sample of adolescent girls, breakfast omission increased post-breakfast free-living EI, but total daily EI was greater when a SB was consumed. We found no evidence that breakfast consumption induces compensatory changes in PA. Further experimental research is required to determine the effects of extended periods of breakfast manipulation in young people.


2009 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
C. R. Hankey

Treatments to induce weight loss for the obese patient centre on the achievement of negative energy balance. This objective can theoretically be attained by interventions designed to achieve a reduction in energy intake and/or an increase in energy expenditure. Such ‘lifestyle interventions’ usually comprise one or more of the following strategies: dietary modification; behaviour change; increases in physical activity. These interventions are advocated as first treatment steps in algorithms recommended by current clinical obesity guidelines. Medication and surgical treatments are potentially available to those unable to implement ‘lifestyle interventions’ effectively by achieving losses of between 5 kg and 10 kg. It is accepted that the minimum of 5% weight loss is required to achieve clinically-meaningful benefits. Dietary treatments differ widely. Successful weight loss is most often associated with quantification of energy intake rather than macronutrient composition. Most dietary intervention studies secure a weight loss of between 5 kg and 10 kg after intervention for 6 months, with gradual weight regain at 1 year where weight changes are 3–4 kg below the starting weight. Some dietary interventions when evaluated at 2 and 4 years post intervention report the effects of weight maintenance rather than weight loss. Specific anti-obesity medications are effective adjuncts to weight loss, in most cases doubling the weight loss of those given dietary advice only. Greater physical activity alone increases energy expenditure by insufficient amounts to facilitate clinically-important weight losses, but is useful for weight maintenance. Weight losses of between half and three-quarters of excess body weight are seen at 10 years post intervention with bariatric surgery, making this arguably the most effective weight-loss treatment.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Russell Rising ◽  
Gul Tiryaki Sonmez

Background. Malnourished infants are small for age and weight.Objectives. Determine profiles in 24-hour energy metabolism in recovering malnourished infants and compare to similarly aged healthy controls.Methods. 10 malnourished infants (58.1±5.9 cm,7.7±5.6months) were healthy prior to spending 22 hours in the Enhanced Metabolic Testing Activity Chamber for measurement of EE (kcal/min), sleeping metabolic rate (SMR; kcal/min), respiratory quotient (RQ;VCO2/VO2), and physical activity (PA; oscillations in wt/min/kg body weight). Metabolic data were extrapolated to 24 hours (kcal/kg/d). Energy intake (kcal/kg/d) and the proportions (%) of carbohydrate, protein, and fat were calculated. Anthropometrics for malnourished infants were obtained. Statistical differences (P<.05) between groups were determined (SPSS, version 13).Results. In comparison to controls, malnourished infants were lighter (4.1±1.2versus7.3±0.8 kg;P<.05), had less body fat % (10.3±7.6versus25.7±2.5), and lower BMI (12.0±1.7versus15.5±1.5;P<.05). In contrast, they had greater energy intake (142.7±14.6versus85.1±25.8;P<.05) with a greater percentage of carbohydrates (55.1±3.9versus47.2±5.2;P<.05). However, malnourished infants had greater 24-hour EE (101.3±20.1versus78.6±8.4;P<.05), SMR (92.6±17.1versus65.0±3.9;P<.05), and RQ (1.00±0.13versus0.86±0.08;P<.05) along with a lower amount of PA (2.3±0.94versus4.0±1.5;P<.05).Conclusions. Malnourished infants require more energy, possibly for growth.


2009 ◽  
Vol 102 (12) ◽  
pp. 1838-1846 ◽  
Author(s):  
Anja Biltoft-Jensen ◽  
Jeppe Matthiessen ◽  
Lone B. Rasmussen ◽  
Sisse Fagt ◽  
Margit V. Groth ◽  
...  

Under-reporting of energy intake (EI) is a well-known problem when measuring dietary intake in free-living populations. The present study aimed at quantifying misreporting by comparing EI estimated from the Danish pre-coded food diary against energy expenditure (EE) measured with a validated position-and-motion instrument (ActiReg®). Further, the influence of recording length on EI:BMR, percentage consumers, the number of meal occasions and recorded food items per meal was examined. A total of 138 Danish volunteers aged 20–59 years wore the ActiReg® and recorded their food intake for 7 consecutive days. Data for 2504 participants from the National Dietary Survey 2000–2 were used for comparison of characteristics and recording length. The results showed that EI was underestimated by 12 % on average compared with EE measured by ActiReg® (PreMed AS, Oslo, Norway). The 95 % limits of agreement for EI and EE were − 6·29 and 3·09 MJ/d. Of the participants, 73 % were classified as acceptable reporters, 26 % as under-reporters and 1 % as over-reporters. EI:BMR was significantly lower on 1–3 consecutive recording days compared with 4–7 recording days (P < 0·03). Percentage consumers of selected food items increased with number of recording days. When recording length was 7 d, the number of reported food items per meal differed between acceptable reporters and under-reporters. EI:BMR was the same on 4 and 7 consecutive recording days. This was, however, a result of under-reporting in the beginning and the end of the 7 d reporting. Together, the results indicate that EI was underestimated at group level and that a 7 d recording is preferable to a 4 d recording period.


2016 ◽  
Vol 13 (s1) ◽  
pp. S57-S61 ◽  
Author(s):  
Alison L. Innerd ◽  
Liane B. Azevedo

Background:The aim of this study is to establish the energy expenditure (EE) of a range of child-relevant activities and to compare different methods of estimating activity MET.Methods:27 children (17 boys) aged 9 to 11 years participated. Participants were randomly assigned to 1 of 2 routines of 6 activities ranging from sedentary to vigorous intensity. Indirect calorimetry was used to estimate resting and physical activity EE. Activity metabolic equivalent (MET) was determined using individual resting metabolic rate (RMR), the Harrell-MET and the Schofield equation.Results:Activity EE ranges from 123.7± 35.7 J/min/Kg (playing cards) to 823.1 ± 177.8 J/min/kg (basketball). Individual RMR, the Harrell-MET and the Schofield equation MET prediction were relatively similar at light and moderate but not at vigorous intensity. Schofield equation provided a better comparison with the Compendium of Energy Expenditure for Youth.Conclusion:This information might be advantageous to support the development of a new Compendium of Energy Expenditure for Youth.


1999 ◽  
Vol 2 (3a) ◽  
pp. 335-339 ◽  
Author(s):  
Marleen A. Van Baak

AbstractEnergy expenditure rises above resting energy expenditure when physical activity is performed. The activity-induced energy expenditure varies with the muscle mass involved and the intensity at which the activity is performed: it ranges between 2 and 18 METs approximately. Differences in duration, frequency and intensity of physical activities may create considerable variations in total energy expenditure. The Physical Activity Level (= total energy expenditure divided by resting energy expenditure) varies between 1.2 and 2.2–2.5 in healthy adults. Increases in activity-induced energy expenditure have been shown to result in increases in total energy expenditure, which are usually greater than the increase in activity-induced energy expenditure itself. No evidence for increased spontaneous physical activity, measured by diary, interview or accelerometer, was found. However, this does not exclude increased physical activity that can not be measured by these methods. Part of the difference may also be explained by the post-exercise elevation of metabolic rate.If changes in the level of physical activity affect energy balance, this should result in changes in body mass or body composition. Modest decreases of body mass and fat mass are found in response to increases in physical activity, induced by exercise training, which are usually smaller than predicted from the increase in energy expenditure. This indicates that the training-induced increase in total energy expenditure is at least partly compensated for by an increase in energy intake. There is some evidence that the coupling between energy expenditure and energy intake is less at low levels of physical activity. Increasing the level of physical activity for weight loss may therefore be most effective in the most sedentary individuals.


Sign in / Sign up

Export Citation Format

Share Document