scholarly journals Effect of Different Enriched Vermicomposts, Humic Acid Extract and Indole-3-Acetic Acid Amendments on the Growth of Brassica napus

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Arash Hemati ◽  
Hossein Ali Alikhani ◽  
Ladan Ajdanian ◽  
Mehdi Babaei ◽  
Behnam Asgari Lajayer ◽  
...  

Humic acid (HA) is a specific and stable component of humus materials that behaves similarly to growth stimulants, esp. auxin hormones, contributing to improving growth indices and performance of plants. As a rich source of HA, vermicompost (VC) is also a plant growth stimulating bio-fertilizer that can enhance growth indices and performance in plants. The purpose of the present study is to compare the influence of VC enriched with bacterial and/or fertilizer, commercial humic acid (CHA) extract, and indole-3-acetic acid (IAA) on improving growth characteristics and performance of rapeseed under greenhouse conditions. The results showed the complete superiority of VC over the CHA and IAA (approximately 8% increase in the dry weights of root and aerial organ and nearly three times increase in seed weight). The highest values of these indices were obtained with VC enriched with Nitrogen, Sulfur, and Phosphorus, Azotobacter chroococcum and Pseudomonas fluorescens; the lowest value was obtained with VC enriched with urea. Additionally, the application of 3% VC and the control involved the highest and lowest values in all traits, respectively. The SPAD (chlorophyll index) value and stem diameter were not significantly affected by different application levels of VC. Overall, the applications of IAA and the CHA were not found to be suitable and therefore not recommended.

Author(s):  
Amir Hossein Baghaie

Introduction: Soil remediation is one of the most important fields in environmental studies. This study was conducted to investigate the effect of indole-3-acetic acid (IAA) and humic acid (HA) on increasing the bio-degradation of diesel oil in soil polluted with (lead) Pb and cadmium (Cd). Materials and Methods: Treatments included foliar application of IAA (0 (control) and 30 ppm) and soil application of HA (0 (control) and 200 mg/kg soil) in the soil contaminated with Cd (0 (control), 10 and 15 mg/kg soil), Pb (0 (control) and 1600 mg/kg soil), and diesel oil (0 (control), and 8% (W/W)). The sunflower was planted in all soil samples. The plants were harvested after 70 days and Pb and Cd concentrations of plants were measured using Atomic Absorption Spectroscopy. Results: Foliar application of IAA at the rate of 30 mg/l significantly increased the Cd and Pb phytoremediation by 14.8% and 13.4%, respectively. For HA application, it was increased by 11.3% and 10.2%, respectively.  A significant increase was found in degradation percentage of diesel oil in soil by 12.6%, when the soil was treated with 200 mg HA/kg soil. Conclusion: It can be concluded that application of organic amendments such as IAA or HA can be a suitable way for increasing plant growth and increasing plant phytoremediation efficiency, especially in the soil contaminated with diesel oil. However, the phytoremediation efficiency is dependent on the plant physiology and the type of soil pollution that should be considered.


2017 ◽  
Vol 68 (5) ◽  
pp. 903-907
Author(s):  
Ecaterina Anca Serban ◽  
Ioana Diaconu ◽  
Elena Ruse ◽  
Georgiana Ileana Badea ◽  
Adriana Cuciureanu ◽  
...  

Indole-3-acetic acid is a growth phytohormone considered the most important representative of auxin class. This paper presents the assessment of some kinetic parameters in the process of transport of indole-3-acetic acid taking into consideration the kinetic model of consecutive irreversible first order reactions. It was pursued the influence upon the process of parameters such as: feed phase concentration, stripping phase concentration in the presence of two type carriers: tributyl phosphate (TBP) and trioctylphosphine oxide (TOPO). Depending on these transport parameters were calculated kinetics parameters such as: pseudo-first-order apparent membrane entrance and exit rate constants, the maximum flux at the entrance and exit out of the membrane. The highest values of the transport flux is obtained in the presence of carrier trioctylphosphine oxide (TOPO) at the concentration in the feed phase of 10-4 mol/L indole-3-acetic acid and a concentration of 10--2mol/L NaOH in the stripping phase.


2017 ◽  
Vol 7 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Nazia Ahmad ◽  
Tasneem Fatma

Sign in / Sign up

Export Citation Format

Share Document