scholarly journals Nanocomposite Film Containing Fibrous Cellulose Scaffold and Ag/TiO2 Nanoparticles and Its Antibacterial Activity

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1052 ◽  
Author(s):  
Yanxiang Li ◽  
Jessica Tian ◽  
Chuanfang Yang ◽  
Benjamin Hsiao

Cellulose is a natural polymer that is widely used in daily life, but it is susceptible to microorganism growth. In this study, a simple sol–gel technique was utilized to incorporate the cellulose scaffold with Ag/TiO2 nanoparticles. The morphology and crystal structure of the as-prepared Ag/TiO2/cellulose composite film were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. Antibacterial tests involving the use of Escherichia coli (E. coli) were carried out under dark and UV-light conditions to evaluate the efficiency of the Ag/TiO2/cellulose composite film in comparison with pristine cellulose paper and TiO2/cellulose composite film. The results indicated that the antibacterial activity of the Ag/TiO2/cellulose composite film outperformed all other samples, where the Ag content of 0.030 wt% could inhibit more than 99% of E. coli. This study suggests that finely dispersed nanocale Ag/TiO2 particles in the cellulose scaffold were effective at slowing down bacterial growth, and the mechanisms of this are also discussed.

2018 ◽  
Vol 34 (6) ◽  
pp. 3140-3144
Author(s):  
Ritu Vershney ◽  
Komal Chelaramani ◽  
Arpan Bhardwaj ◽  
Nayma Siddiqui ◽  
Suresh Kumar Verma

The synthesis of Ni doped titania (TiO2) nanoparticles were achieved via simple novel sol gel technique, in which Titanium-n-butoxide and NiCl2 were taken as precursors. Effect of different wt% of dopant in TiO2 was studied on photocatalytic degradation of Aniline blue and Toluidine Blue. The study suggested the increased photocatalytic degradation with increased time duration. The synthesized samples were analyzed by surface electron microscopy (SEM) and X-ray diffraction studies. The antibacterial activity was investigated against Gram-positive Staphylococcus aureus bacteriae. Studies revealed that on increasing the dopant concentration, the diameter of zone of inhibition also increased upto 1.5 wt%.


2018 ◽  
Vol 51 ◽  
pp. 69-77 ◽  
Author(s):  
Hanif Mohammadi ◽  
Mohammad Ghorbani

Titanium dioxide is prepared by sol gel method from titanium tetraisopropoxide (TTIP) as precursor and likewise zinc oxide is prepared by sol gel method from zinc acetate dehydrate (ZAD) as precursor. The composite sols are prepared in three different molar ratios 90TiO2:10ZnO, 70TiO2:30ZnO and 50TiO2:50ZnO. Thin film deposition is carried out by dip coating technique. Crystal structure, surface morphology and photocatalytic activity of the prepared nanocomposite thin films are investigated. The antibacterial activity of the prepared nanocomposite thin film against E-coli ATCC 25922 bacteria is examined by placing the thin film in standard aqueous E-coli medium under UV light for 1, 2, 3 and 4 hours and then counting the bacteria with Standard Plate Count Agar (SPC) technique. The prepared thin films have shown strong antibacterial activity in the presence of UV light and by increasing the ZnO molar ratio from 10 to 50, antibacterial activity of the thin films decreases because of decreases in the anatase phase of the TiO2. In the dark conditions by increasing the molar ratio of ZnO, the antibacterial activity of the thin films increases and this phenomenon is related to increasing the zinc ions in the thin films.


2015 ◽  
Vol 815 ◽  
pp. 166-170
Author(s):  
Zong Fan Duan ◽  
Juan Ning Wei ◽  
Ying Cui ◽  
Gao Yang Zhao

La0.67Sr0.33MnO3 (LSMO)/Pb0.92La0.08Zr0.65Ti0.35O3 (PLZT) composite film was fabricated on a (001) LaAlO3 (LAO) single crystal substrate by a sol-gel technique. The results from X-ray diffraction (XRD) indicated that LSMO and PLZT could grow successively on LAO substrate with (001) preferred orientation. The ferroelectric and ferromagnetic properties of LAO/LSMO/PLZT composite film were also investigated. The results showed that the remnant polarization Pr, and coercive field Ec of the composite film at room temperature were 36.38 μC/cm2 and 512.43 kV/cm respectively. Moreover, the composite film exhibited significant ferromagnetic hysteresis loops and soft magnetic behavior at temperatures lower than 250 K.


2021 ◽  
Vol 8 (2) ◽  
pp. 21-27
Author(s):  
Abeer Abd Saleh ◽  
Quraish Abbas ◽  
Seenaa Ibraheim ◽  
Ibrahim Muhammed ◽  
Mayes Sameer Hameed ◽  
...  

In this research, preparation of titanium dioxide nanomaterial (TiO2) using sol-gel method was achieved. 2.5 g weight of the titanium dioxide nanoparticles were added to the local paint using the casting method. Thin films were prepared by drop casting the paint onto the surface of pre-prepared samples, then several tests were carried out including adhesion test, hardness test (Shore B), brightness and whiteness, friction test, contact angle, and antibacterial activity. The nanomaterial at a percentage of 12% showed the best results when it was added to the paint. These results include adhesion strength, hardness strength, and exposing to weather conditions of temperature, and humidity. The adhesive strength increased when adding the nanomaterial from 112 to 139 before exposure to the weather and from 58 to 108 after exposure. The hardness also increased from 77.9 to 86.5 before exposure to the surrounding environment and from 94.2 to 96.8 after exposure. In addition, the paint with TiO2 nanoparticles exhibited antibacterial activity against two types of bacteria Escherichia coli (E. coli), staphylococcus aurous (S. aurous) and antifungal candida. Paint with TiO2 nanoparticles is more efficient as antibacterial agents with E. coli as compared with S. aurous and candida.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. L. Aguilar Salinas ◽  
J. R. Pacheco Aguilar ◽  
S. A. Mayén Hernández ◽  
J. Santos Cruz

The photocatalytic activity of semiconductors is increasingly being used to disinfect water, air, soils, and surfaces. Titanium dioxide (TiO2) is widely used as a photocatalyst in thin films, powder, and in mixtures with other semiconductors or metals. This work presents the antibacterial effects of TiO2and light exposure (at 365 nm) onPseudomonas aeruginosaATCC 27853. TiO2powder was prepared from a mixture of titanium isopropoxide, ethanol, and nitric acid using a green and short time sol-gel technique. The obtained gel annealed at 450°C was characterized by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, diffuse reflectance, scanning electron microscopy, and transmission electron microscopy. The nanocomposite effectively catalyzed the inactivation ofPseudomonas aeruginosa. Following 90 minutes exposure to TiO2and UV light, logarithm of cell density was reduced from 6 to 3. These results were confirmed by a factorial design incorporating two experimental replicates and two independent factors.


Author(s):  
Oussama Ouerghi ◽  
Mohammed H. Geesi ◽  
Elmutasim O. Ibnouf ◽  
Mohammad Javed Ansari ◽  
Pravej Alam ◽  
...  

2011 ◽  
Vol 685 ◽  
pp. 367-370 ◽  
Author(s):  
Min Qi ◽  
Da Yi Yang ◽  
Jing Ying Zhang ◽  
Hong Jun Ai

In order to improve the osteoblast growth and bacteria resistance, Zn-containing hydroxyapatite (Zn-HA) and titanium oxide (TiO2) composite coatings were prepared to improve binding between coating and Ti substrate. TiO2 film was prepared on the surface of Ti by micro-arc oxidation (MAO) and Zn-HA coating was deposited on TiO2 using sol–gel technique. Phase structure, composition and microstructure of the surface coatings were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS), respectively. The adhesion strength between the coatings with different Zn content was measured by tensile testing. The results showed that there was no significant influence of Zn content on adhesion strength between coating and Ti substrate.


1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


Sign in / Sign up

Export Citation Format

Share Document