scholarly journals Pressure Orientation-Dependent Recovery of 3D-Printed PLA Objects with Varying Infill Degree

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.

2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7122-7138
Author(s):  
Sang-U Bae ◽  
Young-Rok Seo ◽  
Birm-June Kim ◽  
Min Lee

Fused deposition modeling (FDM) 3D printing technology is the most common system for polymer additive manufacturing (AM). Recent studies have been conducted to expand both the range of materials that can be used for FDM and their applications. As a filler, wood flour was incorporated into poly lactic acid (PLA) polymer to develop a biocomposite material. Composite filaments were manufactured with various wood flour contents and then successfully used for 3D printing. Morphological, mechanical, and biodegradation properties of FDM 3D-printed PLA composites were investigated. To mitigate brittleness, 5 phr of maleic anhydride grafted ethylene propylene diene monomer (MA-EPDM) was added to the composite blends, and microstructural properties of the composites were examined by scanning electron microscopy (SEM). Mechanical strength tests demonstrated that elasticity was imparted to the composites. Additionally, test results showed that the addition of wood flour to the PLA matrix promoted pore generation and further influenced the mechanical and biodegradation properties of the 3D-printed composites. An excellent effect of wood flour on the biodegradation properties of FDM 3D-printed PLA composites was observed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1080 ◽  
Author(s):  
Raúl Sanz-Horta ◽  
Carlos Elvira ◽  
Alberto Gallardo ◽  
Helmut Reinecke ◽  
Juan Rodríguez-Hernández

The fabrication of porous materials for tissue engineering applications in a straightforward manner is still a current challenge. Herein, by combining the advantages of two conventional methodologies with additive manufacturing, well-defined objects with internal and external porosity were produced. First of all, multi-material fused deposition modeling (FDM) allowed us to prepare structures combining poly (ε-caprolactone) (PCL) and poly (lactic acid) (PLA), thus enabling to finely tune the final mechanical properties of the printed part with modulus and strain at break varying from values observed for pure PCL (modulus 200 MPa, strain at break 1700%) and PLA (modulus 1.2 GPa and strain at break 5–7%). More interestingly, supercritical CO2 (SCCO2) as well as the breath figures mechanism (BFs) were additionally employed to produce internal (pore diameters 80–300 µm) and external pores (with sizes ranging between 2 and 12 μm) exclusively in those areas where PCL is present. This strategy will offer unique possibilities to fabricate intricate structures combining the advantages of additive manufacturing (AM) in terms of flexibility and versatility and those provided by the SCCO2 and BFs to finely tune the formation of porous structures.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1239
Author(s):  
Ali Chalgham ◽  
Andrea Ehrmann ◽  
Inge Wickenkamp

Fused deposition modeling (FDM) is one of the most often-used technologies in additive manufacturing. Several materials are used with this technology, such as poly(lactic acid) (PLA), which is most commonly applied. The mechanical properties of 3D-printed parts depend on the process parameters. This is why, in this study, three-point bending tests were carried out to characterize the influence of build orientation, layer thickness, printing temperature and printing speed on the mechanical properties of PLA samples. Not only the process parameters may affect the mechanical properties, but heat after-treatment also has an influence on them. For this reason, additional samples were printed with optimal process parameters and characterized after pure heat treatment as well as after deformation at a temperature above the glass transition temperature, cooling with applied deformation, and subsequent recovery under heat treatment. These findings are planned to be used in a future study on finger orthoses that could either be printed according to shape or in a flat shape and afterwards heated and bent around the finger.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1225
Author(s):  
Daniel Koske ◽  
Andrea Ehrmann

Poly(lactic acid) (PLA) is one of the most often used polymers in 3D printing based on the fused deposition modeling (FDM) method. On the other hand, PLA is also a shape memory polymer (SMP) with a relatively low glass transition temperature of ~60 °C, depending on the exact material composition. This enables, on the one hand, so-called 4D printing, i.e., printing flat objects which are deformed afterwards by heating them above the glass transition temperature, shaping them and cooling them down in the desired shape. On the other hand, objects from PLA which have been erroneously deformed, e.g., bumpers during an accident, can recover their original shape to a certain amount, depending on the applied temperature, the number of deformation cycles, and especially on the number of broken connections inside the object. Here, we report on an extension of a previous study, investigating optimized infill designs which avoid breaking in 3-point bending tests and thus allow for multiple repeated destruction and recovery cycles with only a small loss in maximum force at a certain deflection.


Sign in / Sign up

Export Citation Format

Share Document