scholarly journals Comparative Study of the Properties of Wood Flour and Wood Pellets Manufactured from Secondary Processing Mill Residues

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2487
Author(s):  
Geeta Pokhrel ◽  
Yousoo Han ◽  
Douglas J. Gardner

The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood–plastic composites (WPCs). Scientific research on wood flour production from mill residues is limited. One of the greatest costs involved in the supply chain of WPCs manufacturing is the transportation cost. Wood flour, constrained by low bulk densities, is commonly transported by truck trailers without attaining allowable weight limits. Because of this, shipping costs often exceed the material costs, consequently increasing raw material costs for WPC manufacturers and the price of finished products. A bulk density study of wood flour (190–220 kg/m3) and wood pellets (700–750 kg/m3) shows that a tractor-trailer can carry more than three times the weight of pellets compared to flour. Thus, this study focuses on exploring the utilization of mill residues from four wood species in Maine to produce raw materials for manufacturing WPCs. Two types of raw materials for the manufacture of WPCs, i.e., wood flour and wood pellets, were produced and a study of their properties was performed. At the species level, red maple 40-mesh wood flour had the highest bulk density and lowest moisture content. Spruce-fir wood flour particles were the finest (dgw of 0.18 mm). For all species, the 18–40 wood flour mesh size possessed the highest aspect ratio. Similarly, on average, wood pellets manufactured from 40-mesh particles had a lower moisture content, higher bulk density, and better durability than the pellets from unsieved wood flour. Red maple pellets had the lowest moisture content (0.12%) and the highest bulk density (738 kg/m3). The results concluded that the processing of residues into wood flour and then into pellets reduced the moisture content by 76.8% and increased the bulk density by 747%. These material property parameters are an important attempt to provide information that can facilitate the more cost-efficient transport of wood residue feedstocks over longer distances.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2769
Author(s):  
Geeta Pokhrel ◽  
Douglas J. Gardner ◽  
Yousoo Han

Driven by the motive of minimizing the transportation costs of raw materials to manufacture wood–plastic composites (WPCs), Part I and the current Part II of this paper series explore the utilization of an alternative wood feedstock, i.e., pellets. Part I of this study reported on the characteristics of wood flour and wood pellets manufactured from secondary processing mill residues. Part II reports on the physical and mechanical properties of polypropylene (PP)-based WPCs made using the two different wood feedstocks, i.e., wood flour and wood pellets. WPCs were made from 40-mesh wood flour and wood pellets from four different wood species (white cedar, white pine, spruce-fir and red maple) in the presence and absence of the coupling agent maleic anhydride polypropylene (MAPP). With MAPP, the weight percentage of wood filler was 20%, PP 78%, MAPP 2% and without MAPP, formulation by weight percentage of wood filler was 20% and PP 80%. Fluorescent images showed wood particles’ distribution in the PP polymer matrix was similar for both wood flour and ground wood pellets. Dispersion of particles was higher with ground wood pellets in the PP matrix. On average, the density of composite products from wood pellets was higher, tensile strength, tensile modulus and impact strength were lower than the composites made from wood flour. Flexural properties of the control composites made with pellets were higher and with MAPP were lower than the composites made from wood flour. However, the overall mechanical property differences were low (0.5–10%) depending on the particular WPC formulations. Statistical analysis also showed there was no significant differences in the material property values of the composites made from wood flour and wood pellets. In some situations, WPC properties were better using wood pellets rather than using wood flour. We expect if the material properties of WPCs from wood flour versus wood pellets are similar and with a greater reduction in transportation costs for wood pellet feedstocks, this would be beneficial to WPC manufacturers and consumers.


2018 ◽  
Vol 12 (1) ◽  
pp. 99 ◽  
Author(s):  
Victor Tulus Pangapoi Sidabutar

Dunia saat ini mulai beralih dari menggunakan batu bara ke sumber energi yang terbarukan. Salah satunya adalah pelet kayu demi mengurangi emisi gas rumah kaca dan meningkatkan penggunaan energi terbarukan pengganti energi fosil. Produsen utama pelet kayu di dunia saat ini adalah Amerika Serikat sedangkan untuk wilayah ASEAN adalah Vietnam. Di ASEAN, potensi Indonesia tidak kalah dari Vietnam. Indonesia unggul dalam jumlah luas hutan tanam dan pertanian yang lebih luas dibandingkan Vietnam. Selain itu, keragaman hayati tumbuhan yang ada dapat dijadikan sumber bahan baku pelet kayu yang unik dibandingkan pesaing lainnya. Legalisasi dan regulasi untuk keberlangsungan bahan baku merupakan persyaratan utama untuk memasuki pasar Eropa. Pemerintah Indonesia memberikan dukungan penuh dengan semakin mudahnya perijinan terkait legalisasi dan keberlangsungan bahan baku kayu. Study of Increasing the Export Potential of Indonesia Wood Pellets as a Source of the Renewable Biomass Energy SourceAbstractThe world today is beginning to switch from using coal into renewable energy sources. One of them is wood pellets in order to reduce greenhouse gas emissions and increase the use of renewable energy substitute for fossil energy. The major manufacturer of wood pellets in the world today is the United States, while for the ASEAN region is Vietnam. In ASEAN, Indonesia’s potential is not less than Vietnam. Indonesia superior in numbers of forests and agricultural crops compare to Vietnam. In addition, the existing plant biodiversity that can be used as a source of raw material for wood pellets are unique compared to other competitors. Legalization and regulation in terms of the sustainability of raw materials is a key requirement to enter the European market. The Indonesian government gave full support to the more easily permits related legalization and sustainability of wood raw material.


Author(s):  
A. Yu. Sharikov ◽  
V. I. Stepanov ◽  
V. V. Ivanov ◽  
D. V. Polivanovskaya ◽  
M. A. Amelyakina

The actual challenge for the food industry is the utilization of by-products of fruit and vegetable processing and their use in the production of enriched food products. It allows to use raw materials with a high content of biological active substances more efficiently and rationally. The possibility of using carrot bagasse as an ingredient in the preparation of extruded ready-to-eat product was studied. The wheat meal was used as core ingredient. The influence of the bagasse dosage on the extrusion conditions and the properties of the extrudates samples was studied. It was shown that an increase of the bagasse content more than 20% influenced the quality of the product negatively.The expansion index decreased more than 2 times and the bulk density increased by 40%. The method of additional steam venting from the middle part of the extruder chamber was investigated during the extrusion cooking of mixtures with the bagasse content more than 20% and moisture content 26.5, 28.9 and 34.5%.The indicator of the steam venting was the reduction of pressure in the degassing installation. As a result, the moisture content of the material in the die zone of the extruder chamber decreased. It was shown that additional steam venting during extrusion of high-moisture mixtures led to more severe extrusion conditions. The temperature, die pressure and torgue increased significantly. It imroved the quality of extrudates. Steam venting during extrusion of blends with 26.5 and 28.9% moisture increased expansion index more than 2 times and decreased the bulk density by 21-25%.Extrusion process of a mixture with a moisture content of 34.5% without and with steam venting was unstable and did not allowed to obtain samples of extrudates with acceptable quality. The proposed method for extrusion of high-moisture blend of wheat flour with carrot bagasse can be basis for developing technologies for the production of ready-to-eat extruded products using moist food by-products of fruits and vegetables processing.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9766
Author(s):  
Víctor Daniel Núñez-Retana ◽  
Rigoberto Rosales-Serna ◽  
José Ángel Prieto-Ruíz ◽  
Christian Wehenkel ◽  
Artemio Carrillo-Parra

Background Biomass usage for energy purposes has emerged in response to global energy demands and environmental problems. The large amounts of by-products generated during logging are rarely utilized. In addition, some species (e.g., Quercus spp.) are considered less valuable and are left in the cutting areas. Production of pellets from this alternative source of biomass may be possible for power generation. Although the pellets may be of lower quality than other types of wood pellets, because of their physical and technological properties, the addition of different raw materials may improve the characteristics of the oak pellets. Methods Sawdust from the oak species Quercus sideroxyla, Q. rugosa, Q. laeta and Q. conzattii was mixed with sawdust from the pine Pinus durangensis in different ratios of oak to pine (100:0, 80:20, 60:40, 40:60 and 20:80). Physical and mechanical properties of the pellets were determined, and calorific value tests were carried out. For each variable, Kolmogorov–Smirnov normality and Kruskal–Wallis tests were performed and Pearson’s correlation coefficients were determined (considering a significance level of p < 0.05). Results The moisture content and fixed carbon content differed significantly (p < 0.05) between the groups of pellets (i.e., pellets made with different sawdust mixtures). The moisture content of all pellets was less than 10%. However, volatile matter and ash content did not differ significantly between groups (p ≥ 0.05). The ash content was less than 0.7% in all mixtures. The addition of P. durangensis sawdust to the mixtures improved the bulk density of the pellets by 18%. Significant differences (p < 0.05) in particle density were observed between species, mixtures and for the species × mixture interaction. The particle density was highest in the 80:20 and 60:40 mixtures, with values ranging from 1,245 to 1,349 kg m−3. Bulk density and particle density of the pellets were positively correlated with the amount of P. durangensis sawdust included. The mechanical hardness and impact resistance index (IRI) differed significantly (p < 0.05) between groups. The addition of pine sawdust decreased the mechanical hardness of the pellets, up to 24%. The IRI was highest (138) in the Q. sideroxyla pellets (100:0). The mechanical hardness and IRI of the pellets were negatively correlated with the amount of P. durangensis sawdust added. The bulk density of the pellets was negatively correlated with mechanical hardness and IRI. The calorific value of mixtures and the species × mixture interaction differed significantly between groups. Finally, the mean calorific value was highest (19.8 MJ kg−1) in the 20:80 mixture. The calorific value was positively related to the addition of P. durangensis sawdust.


Author(s):  
SAFITRI NURHIDAYATI ◽  
RIZKI AMELYA SYAM

This study aims to analyze whether the difference that occurs in the cost of raw materials, direct labor, and factory overhead costs between the standard costs and the actual costs in PLTU LATI is a difference that is favorable or unfavorable. Data collection techniques with field research and library research. The analytical tool used is the analysis of the difference in raw material costs, the difference in direct labor costs and the difference in factory overhead costs. The hypothesis in this study is that the difference allegedly occurs in the cost of raw materials, direct labor costs, and factory overhead costs at PT Indo Pusaka Berau Tanjung Redeb is a favorable difference. The results showed that the difference in the cost of producing MWh electricity at PT Indo Pusaka Berau Tanjung Redeb in 2018, namely the difference in the price of raw material costs Rp. 548,029.80, - is favorable, the difference in quantity of raw materials is Rp. 957,216,602, - is (favorable) , the difference in direct labor costs Rp 2,602,642,084, - is (unfavorable), and the difference in factory overhead costs Rp 8,807,051,422, - is (favorable) This shows that the difference in the overall production cost budget is favorable or profitable. This beneficial difference shows that the company is really able to reduce production costs optimally in 2018.  


2019 ◽  
Vol 39 (2) ◽  
pp. 196-205
Author(s):  
N. V. Firov

A comparative analysis of the prices of raw materials, fuel, electricity in Russia and Western countries, the dynamics of their growth and impact on the national economy. It is shown that in the interests of the country's economic development and improving the welfare of the population, it is necessary to use its natural resources more effectively, to pursue a more stringent and at the same time balanced policy to curb the growth of prices, taking into account the interests of the state and business.


Author(s):  
Mahesh K. Joshi ◽  
J.R. Klein

The twenty-first century is being touted as the Asian century. With its stable economy, good governance, education system, and above all the abundant natural resources, will Australia to take its place in the global economy by becoming more entrepreneurial and accelerating its rate of growth, or will it get infected with the so-called Dutch disease? It has been successful in managing trade ties with fast-developing economies like China and India as well as developed countries like the United States. It has participated in the growth of China by providing iron ore and coal. Because it is a low-risk country, it has enabled inflow of large foreign capital investments. A lot will depend on its capability and willingness to invest the capital available in entrepreneurial ventures, its ability to capture the full value chain of natural resources, and to export the finished products instead of raw materials, while building a robust manufacturing sector.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Grzegorz Trzciński ◽  
Łukasz Tymendorf ◽  
Paweł Kozakiewicz

Transport of wood biomass is one of the key operations in forestry and in the wood industry. An important part is the transport of shredded wood, where the most common forms are chips and sawdust. The aim of the research was to present the variability of the total weight of trucks (gross vehicle weight, GVW), the weight of the empty trucks (tare), and loads of chips and sawdust in different periods of the year. Changes in specific parameters were analyzed: GVW; tare weight; trailer capacity; use of the trailer load capacity; bulk volume and bulk density of wood biomass loads; solid cubic meter (m3) and weight of 1m3 of the load; and load weight depending on the season, with simultaneous measurements of wood chips and sawdust moisture. More than 250 transports from four seasons of the year were analyzed in the research. It was found that the total weight of trucks (GVW) was at a comparable level, on average from 39.42 to 39.64 Mg with slight differences (with SD 0.29 and 0.39). The weight of empty trucks was 16.15 Mg for chip-bearing trucks and 15.93 Mg for sawdust-bearing trucks (with SD 0.604 and 0.526). The type of wood material has an influence on the transported volume. The average quantity of load in the bulk cubic meter was 64.783 m3 for wood chips (SD 3.127) and 70.465 m3 (SD 2.516) for sawdust. Over 30% differences in the volume of transported wood chips and approximately 18% for sawdust were observed. The use of the loading capacity of the trailer was on average 72.58% (SD 5.567) for the transport of wood chips and 77.42% (SD 3.019) for the transport of sawdust. The sawdust bulk density was from 0.3050 to 0.4265 Mg⋅m−3 for wood chips and 0.3200 to 0.3556 Mg⋅m−3 for sawdust. This parameter is significantly dependent on moisture content, and the determined correlation functions can be used for estimating and predicting bulk density. The abovementioned absolute moisture content of chips and sawdust also depends on the season, which also affects the selected parameters of wood biomass loads.


Sign in / Sign up

Export Citation Format

Share Document