scholarly journals Lab-Scale Twin-Screw Micro-Compounders as a New Rubber-Mixing Tool: ‘A Comparison on EPDM/Carbon Black and EPDM/Silica Composites’

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4391
Author(s):  
Nazlı Yazıcı ◽  
Mehmet Kodal ◽  
Güralp Özkoç

The research and development (R&D) in rubber formulation development require reproducible, repeatable, fast, accurate, and efficient sample preparation. The lab-scale formulation development is conventionally carried out using small-scale internal mixers and two-roll mills. However, high torque laboratory twin-screw micro-compounder, which have been serving the plastic industry for more than 30 years, can be used to formulate new rubber compounds for fast and accurate sample preparation that on top can contribute to the economics of R&D. In this study, we investigated the possibility of using lab-scale 15 mL high torque twin-screw micro-compounder as a tool for new rubber compound development. For this purpose, we formulated EPDM/carbon black and EPDM/silica recipes through conventional way using a Banbury mixer followed by a two-roll mill, and through the possible way using a lab-scale 15 mL twin-screw micro-compounder. We crosslinked both systems via hot press at a predefined temperature and time. The rheological and mechanical properties of the compounds were investigated. Moreover, the dispersion of carbon black and silica in the EPDM matrix was judged by DisperGrader and scanning electron microscope (SEM). The conventional way of sample preparation was compared with a possible sample preparation method based on materials’ parameters and ease of operation.

2014 ◽  
Vol 979 ◽  
pp. 159-162
Author(s):  
Surakit Tuampoemsab ◽  
Apaipan Rattanapan ◽  
Pornsri Pakeyangkoon

This research was to elucidate the antagonism of natural anti-and pro-oxidants in synthetic polyisoprene rubber (IR) grade 2200 as a model system. Alanine and linoleic acid was chosen as natural anti-and pro-oxidants, respectively. These two amino acids were directly added into the rubber by mixing in two-roll mill. Peroxide vulcanization and three types of the sulfur curing system, i.e., conventional vulcanization (C.V.), efficient vulcanization (E.V.) and semi-E.V. have been studied. Cure properties of the rubber compounds were characterized with moving die rheometer (MDR) at 150 and 170°C for sulfur and peroxide vulcanizing systems, respectively. The compounded rubbers were divided into two parts. The former was pressed on a hydraulic hot press machine and cut to a dumbbell specimen according to ASTM D412 type C. Then, the rubber specimens were subjecting to accelerate the thermal oxidative degradation at 100°C under air-circulating oven with various times. The deterioration of the aged rubber specimens was determined by tensile test. The latter was shaped and characterized by ozone resistance in accordance with ISO 1431/1. For tensile test, the results showed that only the C.V. system of the sulfur cure, the tensile stress at 200% strain of IR comprised alanine and linoleic acid with the ratio of 1:1 was higher predominantly than that of the cured IR control. In addition, the peroxide cured IR mixed with alanine and linoleic acid cannot be passed the heat aging for 96 h. For the ozone resistance, the results exhibited that all specimens appeared uncountable number of crack but only the IR cured by peroxide presented the length of crack less than 1 mm (C-3). It might be concluded from the experiment that anti-oxidative activity of the alanine plays a vital role in the rubber vulcanizate only for C.V. system. However, the existing of both alanine and linoleic acid in the sulfur cured IR was not outstandingly changed for the ozone resistance but not that for the peroxide cured IR.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1054-1060 ◽  
Author(s):  
Mohan Kumar Harikrishna Kumar ◽  
Subramaniam Shankar ◽  
Rathanasamy Rajasekar ◽  
Pal Samir Kumar ◽  
Palaniappan Sathish Kumar

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Lise Vandevivere ◽  
Maxine Vangampelaere ◽  
Christoph Portier ◽  
Cedrine de Backere ◽  
Olaf Häusler ◽  
...  

The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

2013 ◽  
Vol 80 (3) ◽  
Author(s):  
Thelma G. Manning ◽  
Joseph Leone ◽  
Martijn Zebregs ◽  
Dinesh R. Ramlal ◽  
Chris A. van Driel

In order to eliminate residual solvents in ammunition and to reduce the emissions of volatile organic compounds to the atmosphere, the U.S. Army ARDEC has teamed with TNO in developing a new process for the production of solventless propellant for tank ammunition. To reduce the costs of solventless propellants production, shear roll mill and continuous extrusion processing was investigated. As described in this paper JA-2 a double base propellant cannot be processed without solvent by the extrusion process. An alternative JA-2 equivalent propellant was defined. The aim of this work is to demonstrate the manufacturing of this propellant by solventless continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior ballistic properties of the gun propellant and utilizing a continuous manufacturing process. Processing conditions were established, and the propellant was manufactured accordingly. The extruded propellant has the desired properties, which resulted in a comparable gun performance as the conventional JA-2 propellant.


1979 ◽  
Vol 52 (2) ◽  
pp. 294-303 ◽  
Author(s):  
R. Caspary ◽  
P. Kretschmer

Abstract The dependence of the Index of Elasticity, E, the reciprocal value of sound velocity, on temperature and pressure is related to specific volume and compressibility of rubbers. The sensitivity of E towards changes of temperature and pressure was calculated, indicating a new versatile possibility for the control of rubber extruders. To confirm this, extruder experiments were carried out with an SHR compound, of which a working diagram was established showing the complete behavior of E=f(p,T). The effect of compound composition, especially of plasticizer and carbon black content, was examined. Viscosity in the extruder primarily determines changes in E. The method was shown to be applicable up to a die diameter of at least 200 mm. The method may also be applied to follow degradation of rubber compounds during mastication.


1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


Sign in / Sign up

Export Citation Format

Share Document