scholarly journals Continuous Fixed-Bed Column Studies on Congo Red Dye Adsorption-Desorption Using Free and Immobilized Nelumbo nucifera Leaf Adsorbent

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Vairavel Parimelazhagan ◽  
Gautham Jeppu ◽  
Nakul Rampal

The adsorption of Congo red (CR), an azo dye, from aqueous solution using free and immobilized agricultural waste biomass of Nelumbo nucifera (lotus) has been studied separately in a continuous fixed-bed column operation. The N. nucifera leaf powder adsorbent was immobilized in various polymeric matrices and the maximum decolorization efficiency (83.64%) of CR occurred using the polymeric matrix sodium silicate. The maximum efficacy (72.87%) of CR dye desorption was obtained using the solvent methanol. Reusability studies of free and immobilized adsorbents for the decolorization of CR dye were carried out separately in three runs in continuous mode. The % color removal and equilibrium dye uptake of the regenerated free and immobilized adsorbents decreased significantly after the first cycle. The decolorization efficiencies of CR dye adsorption were 53.66% and 43.33%; equilibrium dye uptakes were 1.179 mg g–1 and 0.783 mg g–1 in the third run of operation with free and immobilized adsorbent, respectively. The column experimental data fit very well to the Thomas and Yoon–Nelson models for the free and immobilized adsorbent with coefficients of correlation R2 ≥ 0.976 in various runs. The study concludes that free and immobilized N. nucifera can be efficiently used for the removal of CR from synthetic and industrial wastewater in a continuous flow mode. It makes a substantial contribution to the development of new biomass materials for monitoring and remediation of toxic dye-contaminated water resources.

2018 ◽  
Vol 18 (2) ◽  
pp. 294 ◽  
Author(s):  
Amina Abdel Meguid Attia ◽  
Mona Abdel Hamid Shouman ◽  
Soheir Abdel Atty Khedr ◽  
Nevin Ahmed Hassan

The goal of this article describes the potential of utilizing jojoba leaves and also modified with chitosan as an efficient adsorption materials for Congo red dye removal in a fixed-bed column. Inlet dye concentration, feed flow rate and bed height had a great influence on determining the breakthrough curves. The percentage dye removal was found to be approximately 69% of coated jojoba leaves with flow rate 3 mL/min, initial concentration 50 mg/L and 4 cm bed height. The dye uptake capacity at equilibrium (qe) for coated jojoba leaves showed higher values than that found for jojoba leaves. On this basis, this implies that the amino groups played an important role during the adsorption process. Breakthrough curves were satisfactorily in good agreement with both Thomas and Yoon-Nelson models based on the values of correlation coefficient (R2 ≥ 96).This study serves as a good fundamental aspect of wastewater purification on jojoba leaves as a novel adsorbent for the uptake of Congo red dyes from aqueous solution in a column system.


2018 ◽  
Vol 149 ◽  
pp. 02088 ◽  
Author(s):  
Marouane El Alouani ◽  
Saliha Alehyen ◽  
Mohammed El Achouri ◽  
M’hamed Taibi

Cationic dye adsorption from aqueous solution onto synthesized geopolymer was investigated by batch and fixed bed column experiments. The geopolymer material was elaborated by alkali solution and fly ash supplied by Jorf Lasfar power plant of Morocco. Physical and chemical characteristics of samples were determined by FX, DRX, SEM, 29Si MAS NMR and Zeta potential methods. The Brunauer, Emmett and Teller (BET) technique is used to determine the surface area. The Barrett-Joyner-Halenda (BJH) method was performed to obtain pore size distribution curves and average pore diameter. Kinetics data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. To predict the breakthrough curves and determine the main fixed bed column parameters, three kinetic models; Tomas, Bohart–Adams and Yoon-Nelson models are applied to fitting the experimental data. The kinetic study showed that the pseudo-second-order can be used to describe the methylene blue (MB) adsorption process on the geopolymer matrix. The kinetic models of the adsorption in dynamic column are suitable to describe the continuous adsorption process of dyestuff by the geopolymer. The results of this study indicated that geopolymer derived from fly ash can be used as a low cost effective adsorbent for cationic dye removal from industrial aqueous effluent.


2015 ◽  
Vol 6 (1) ◽  
pp. 204-213
Author(s):  
Radia Mazouz ◽  
Naima Filali ◽  
Zhour Hattab ◽  
Kamel Guerfi

A continuous adsorption study in a fixed-bed column was carried out using granulated slag (GS) as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of various parameters, such as initial dye concentration, flow rate, bed depth, and pH were investigated. Obtained results confirmed that the breakthrough time and exhaustion time were dependent on these factors. The adsorption capacity of GS was calculated at the 50% breakthrough point for different conditions. The highest breakthrough capacity (q,exp = 0.296 mg.g–1) was obtained with a 15 cm bed height and a 2 mL.min–1 rate by using a 10 mg.L–1 initial MB concentration at pH 7.5. Bohart–Adams, Bed Depth Service Time (BDST), and Thomas models were applied to experimental data to determine the characteristic parameters of the column. The Thomas model was found suitable for the description of the whole breakthrough curve, while the Bohart–Adams model was only used to predict the initial part of the dynamic process. The data were in good agreement with the BDST model. Thus, the granulated slag can be used as an adsorbent in the treatment of wastewater. Desorption was carried out with a deionized water as the desorbing agent, and reuse study was investigated.


2021 ◽  
Vol 42 ◽  
pp. 102176
Author(s):  
Pummarin Khamdahsag ◽  
Dickson Y.S. Yan ◽  
Pongnapa Poompang ◽  
Nichapa Supannafai ◽  
Visanu Tanboonchuy

Sign in / Sign up

Export Citation Format

Share Document