scholarly journals A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges

2021 ◽  
Vol 13 (6) ◽  
pp. 1204
Author(s):  
Nadia Delavarpour ◽  
Cengiz Koparan ◽  
John Nowatzki ◽  
Sreekala Bajwa ◽  
Xin Sun

The incorporation of advanced technologies into Unmanned Aerial Vehicles (UAVs) platforms have enabled many practical applications in Precision Agriculture (PA) over the past decade. These PA tools offer capabilities that increase agricultural productivity and inputs’ efficiency and minimize operational costs simultaneously. However, these platforms also have some constraints that limit the application of UAVs in agricultural operations. The constraints include limitations in providing imagery of adequate spatial and temporal resolutions, dependency on weather conditions, and geometric and radiometric correction requirements. In this paper, a practical guide on technical characterizations of common types of UAVs used in PA is presented. This paper helps select the most suitable UAVs and on-board sensors for different agricultural operations by considering all the possible constraints. Over a hundred research studies were reviewed on UAVs applications in PA and practical challenges in monitoring and mapping field crops. We concluded by providing suggestions and future directions to overcome challenges in optimizing operational proficiency.

Nanophotonics ◽  
2018 ◽  
Vol 7 (6) ◽  
pp. 1191-1205 ◽  
Author(s):  
Bin Liang ◽  
Jian-chun Cheng ◽  
Cheng-Wei Qiu

AbstractMolding the wavefront of acoustic waves into the desired shape is of paramount significance in acoustics, which however are usually constrained by the acoustical response of naturally available materials. The emergence of acoustic metamaterials built by assembling artificial subwavelength elements provides distinct response to acoustic waves unattainable in nature. More recently, acoustic metasurfaces, a class of metamaterials with a reduced dimensionality, empower new physics and lead to extended functionalities different from their three-dimensional counterparts, enabling controlling, transmitted or reflected acoustic waves in ways that were not possible before. In this review paper, we present a comprehensive view of this rapidly growing research field by introducing the basic concepts of acoustic metasurfaces and the recent developments that have occurred over the past few years. We review the interesting properties of acoustic metasurfaces and their important functionalities of wavefront manipulation, followed by an outlook for promising future directions and potential practical applications.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 589 ◽  
Author(s):  
Yuliya Khrunyk ◽  
Slawomir Lach ◽  
Iaroslav Petrenko ◽  
Hermann Ehrlich

The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 149-169
Author(s):  
Suruj S. Deka ◽  
Sizhu Jiang ◽  
Si Hui Pan ◽  
Yeshaiahu Fainman

AbstractThe past two decades have seen widespread efforts being directed toward the development of nanoscale lasers. A plethora of studies on single such emitters have helped demonstrate their advantageous characteristics such as ultrasmall footprints, low power consumption, and room-temperature operation. Leveraging knowledge about single nanolasers, the next phase of nanolaser technology will be geared toward scaling up design to form arrays for important applications. In this review, we discuss recent progress on the development of such array architectures of nanolasers. We focus on valuable attributes and phenomena realized due to unique array designs that may help enable real-world, practical applications. Arrays consisting of exactly two nanolasers are first introduced since they can serve as a building block toward comprehending the behavior of larger lattices. These larger-sized lattices can be distinguished depending on whether or not their constituent elements are coupled to one another in some form. While uncoupled arrays are suitable for applications such as imaging, biosensing, and even cryptography, coupling in arrays allows control over many aspects of the emission behavior such as beam directionality, mode switching, and orbital angular momentum. We conclude by discussing some important future directions involving nanolaser arrays.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yaru Yin ◽  
Wenjuan Zheng ◽  
An Yan ◽  
Chenxi Zhang ◽  
Yuxuan Gou ◽  
...  

Nanoscale zerovalent iron (nZVI) has shown great promise for water treatment and soil remediation. However, the rapid aggregation of nZVIs significantly affects their mobility and reactivity, which considerably limits the practical applications. Montmorillonite- (Mt-) supported nZVI (Mt-nZVI) has received increasing attention for the past decade because it can prevent the aggregation of nZVI and incorporate the advantages of both nZVI and Mt in soil and water treatment. This work thus had a comprehensive review on the use of Mt-nZVI for soil and water treatment. We first summarized existing methods used to prepare Mt-nZVI, indicating the advantages of using Mt to support nZVI (e.g., increase of the dispersion and mobility of nZVI, reduction of the size and oxidation tendency of nZVI). We then presented the reaction mechanisms of Mt-nZVI for contaminant removal and evaluated the critical factors that influence the removal (e.g., pH, temperature, and dosage of the adsorbent). We further presented examples of applications of Mt-nZVI for the removal of typical contaminants such as heavy metals and organic compounds in soil and water. We finally discussed the limitations of the use of Mt-nZVI for water treatment and soil remediation and presented future directions for the application of nZVI technology for soil and water treatment.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


2013 ◽  
Vol 22 (3-4) ◽  
pp. 255-277 ◽  
Author(s):  
Vladimír Bačík ◽  
Michal Klobučník

Abstract The Tour de France, a three week bicycle race has a unique place in the world of sports. The 100th edition of the event took place in 2013. In the past of 110 years of its history, people noticed unique stories and duels in particular periods, celebrities that became legends that the world of sports will never forget. Also many places where the races unfolded made history in the Tour de France. In this article we tried to point out the spatial context of this event using advanced technologies for distribution of historical facts over the Internet. The Introduction briefly displays the attendance of a particular stage based on a regional point of view. The main topic deals with selected historical aspects of difficult ascents which every year decide the winner of Tour de France, and also attract fans from all over the world. In the final stage of the research, the distribution of results on the website available to a wide circle of fans of this sports event played a very significant part (www.tdfrance.eu). Using advanced methods and procedures we have tried to capture the historical and spatial dimensions of Tour de France in its general form and thus offering a new view of this unique sports event not only to the expert community, but for the general public as well.


2018 ◽  
Vol 1 (94) ◽  
pp. 38-44
Author(s):  
А.M. Malienkо ◽  
N.E. Borуs ◽  
N.G. Buslaeva

In the article, the results of research on the methodology for conducting studies with corn culture under various methods of sowing and weather conditions. The aim of the research was to establish and evaluate the reliability and high accuracy of the experiment, with a decrease in the area's acreage and taking one plant per repetition. Based on the results of the analysis of biometric parameters and yields, the possibility of sampling from 5 to 108 plants was established statistically and mathematically to establish the accuracy of the experiment. The established parameters of sites in experiments with maize indicate the possibility of obtaining much more information from a smaller unit of area, that is, to increase labor productivity not only with tilled crops. This is the goal of further scientific research with other field crops taking 1 plant of repetitions, observing the conditions of leveling the experimental plot according to the fertility of the soil and sowing seeds with high condition. The data obtained give grounds for continuing research on the minimum space required and the sample in the experiments.


2018 ◽  
Vol 13 (3) ◽  
pp. 29
Author(s):  
D. A. Abgadzhava ◽  
A. S. Vlaskina

War is an essential part of the social reality inherent in all stages of human development: from the primitive communal system to the present, where advanced technologies and social progress prevail. However, these characteristics do not make our society more peaceful, on the contrary, according to recent research and reality, now the number of wars and armed conflicts have increased, and most of the conflicts have a pronounced local intra-state character. Thus, wars in the classical sense of them go back to the past, giving way to military and armed conflicts. Now the number of soldiers and the big army doesn’t show the opponents strength. What is more important is the fact that people can use technology, the ideological and informational base to win the war. According to the history, «weak» opponent can be more successful in conflict if he has greater cohesion and ideological unity. Modern wars have already transcended the political boundaries of states, under the pressure of certain trends, they are transformed into transnational wars, that based on privatization, commercialization and obtaining revenue. Thus, the present paper will show a difference in understanding of terms such as «war», «military conflict» and «armed conflict». And also the auteurs will tell about the image of modern war and forecasts for its future transformation.


2020 ◽  
Vol 26 ◽  
Author(s):  
Pengmian Feng ◽  
Lijing Feng ◽  
Chaohui Tang

Background and Purpose: N 6 -methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As good complements to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. Methods: In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on existing methods. Results: Since researches on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progresses on computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites were presented. Conclusion: Taken together, we anticipate that this review will provide important guides for computational analysis of m 6A modifications.


2021 ◽  
Vol 11 (4) ◽  
pp. 1853
Author(s):  
João Cenicante ◽  
João Botelho ◽  
Vanessa Machado ◽  
José João Mendes ◽  
Paulo Mascarenhas ◽  
...  

Alveolar ridge resorption is a natural consequence of teeth extraction, with unpleasant aesthetic and functional consequences that might compromise a future oral rehabilitation. To minimize the biological consequences of alveolar ridge resorption, several surgical procedures have been designed, the so-called alveolar ridge preservation (ARP) techniques. One important characteristic is the concomitant use of biomaterial in ARP. In the past decade, autogenous teeth as a bone graft material in post-extraction sockets have been proposed with very interesting outcomes, yet with different protocols of preparation. Here we summarize the available evidence on autogenous teeth as a biomaterial in ARP, its different protocols and future directions.


Sign in / Sign up

Export Citation Format

Share Document