scholarly journals Using UAV and Field Measurement Technology to Monitor the Impact of Coal Gangue Pile Temperature on Vegetation Ecological Construction

2022 ◽  
Vol 14 (2) ◽  
pp. 353
Author(s):  
Mengying Ruan ◽  
Zhenqi Hu ◽  
Xinyi Duan ◽  
Tao Zhou ◽  
Xinran Nie

Coal gangue is an inevitable product in coal mining and processing and is the most important source of pollution in mines. Vegetation restoration of coal gangue piles must consider its special site conditions. Therefore, we conducted unmanned air vehicle (UAV) temperature monitoring, field investigation and experimental analysis on spontaneous combustion coal gangue piles in Lu’an mining area. In the vegetation construction of coal gangue piles, high-temperature stress affects plant survival. The spontaneous combustion coal gangue piles have abnormal temperature, high surface temperature and few vegetation types. The plant community species diversity index (Shannon–Wiener index, Pielou’s index and Species abundance index) is small, the plant community is single and the plant diversity is low. Spontaneous combustion of coal gangue leads to soil acidification, reducing soil water content, soil organic carbon (SOM), available nitrogen (AN), available potassium (AK) and available phosphorus (AP). These factors are single or interactive in plants and have an impact on plant survival and growth. The research results are of great significance to the vegetation restoration of spontaneous combustion coal gangue piles, ecological reconstruction and the improvement of the ecological environment of coal mine areas.

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


2021 ◽  
Author(s):  
Myron van Damme

AbstractAn accurate means of predicting erosion rates is essential to improve the predictive capability of breach models. During breach growth, erosion rates are often determined with empirical equations. The predictive capability of empirical equations is governed by the range for which they have been validated and the accuracy with which empirical coefficients can be established. Most empirical equations thereby do not account for the impact of material texture, moisture content, and compaction energy on the erosion rates. The method presented in this paper acknowledges the impact of these parameters by accounting for the process of dilation during erosion. The paper shows how, given high surface shear stresses, the erosion rate can be quantified by applying the principles of soil mechanics. Key is thereby to identify that stress balance situation for which the dilatency induced inflow gives a maximum averaged shear resistance. The effectiveness of the model in predicting erosion rates is indicated by means of three validation test cases. A sensitivity analysis of the method is also provided to show that the predictions lie within the range of inaccuracy of the input parameters.


2021 ◽  
Vol 13 (13) ◽  
pp. 2634
Author(s):  
Qiyuan Wang ◽  
Yanling Zhao ◽  
Feifei Yang ◽  
Tao Liu ◽  
Wu Xiao ◽  
...  

Vegetation heat-stress assessment in the reclamation areas of coal gangue dumps is of great significance in controlling spontaneous combustion; through a temperature gradient experiment, we collected leaf spectra and water content data on alfalfa. We then obtained the optimal spectral features of appropriate leaf water content indicators through time series analysis, correlation analysis, and Lasso regression analysis. A spectral feature-based long short-term memory (SF-LSTM) model is proposed to estimate alfalfa’s heat stress level; the live fuel moisture content (LFMC) varies significantly with time and has high regularity. Correlation analysis of the raw spectrum, first-derivative spectrum, spectral reflectance indices, and leaf water content data shows that LFMC and spectral data were the most strongly correlated. Combined with Lasso regression analysis, the optimal spectral features were the first-derivative spectral value at 1661 nm (abbreviated as FDS (1661)), RVI (1525,1771), DVI (1412,740), and NDVI (1447,1803). When the classification strategies were divided into three categories and the time sequence length of the spectral features was set to five consecutive monitoring dates, the SF-LSTM model had the highest accuracy in estimating the heat stress level in alfalfa; the results provide an important theoretical basis and technical support for vegetation heat-stress assessment in coal gangue dump reclamation areas.


2009 ◽  
Vol 1217 ◽  
Author(s):  
A. C. Buchanan, III ◽  
Michelle K. Kidder

AbstractOrdered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity of phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant β-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert “spacer” molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M’ species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO2 into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.


Author(s):  
Mohammad Azadeh ◽  
Hamidreza Khakrah

This study numerically investigated the behavior of a Newtonian droplet impacting a heated porous surface. In this regard, a two-phase finite volume code was used for laminar flow. The time adaptive method was applied to enhance the accuracy of results and better convergence of the solving process. Also, the dynamic grid adaptation technique was adopted to predict the liquid-air interface precisely. The results were first validated against experimental data at different Weber numbers. Then the effect of variations in the droplet temperature was investigated on the spreading factor. The obtained results revealed that the rise in droplet temperature led to an increase in the maximum spreading diameter due to the reduction in the effects of viscosity, density, and surface tension. In the next step, the effects of droplet impact on the hydrophilic and superhydrophobic surfaces with the porosities of 20–80% were evaluated. The obtained results revealed that the increase in the surface porosity caused a decrease in the droplet diameter during the impact time. Also, at high surface porosity values, the decline in the contact angle influence on the droplet dynamic behavior was observed.


2016 ◽  
Vol 22 (2) ◽  
pp. 324-341
Author(s):  
Rafał Gawałkiewicz ◽  
Anna Szafarczyk

Mounds, as anthropogenic constructions of a very delicate structure, are subdued to constant changes, which, due to the impact of external factors (prolonged precipitation, tremors) are subdued to deformations in the form of mass movements. These phenomena usually have the character of mild soil creep in time and sometimes, as a result of rapid loss of stability, they are seriously damaged by landslide. This phenomenon causes temporary exclusion of the object from use. In the framework of the protection of these objects, the maintenance was carried out within the preventive measures referring to the construction and surveying monitoring of the geometry changes in time, as a result of phenomena taking place in the ground medium under the influence of environmental factors causing strains. The process of the deformation of mounds is similar to the characteristic, according to the Terzagie's theory. The application of surveying technologies of high precision allows the monitoring of changes in their geometry in time. The properly defined study area and the proper selection of measurement technology in the aspect of the accuracy of the prediction of changes, can efficiently help in defining the scale of deformations in the decisive process referring to the way of efficient protection of barrows. The article presents the results of point monitoring carried out with surveying technologies within 11 measurement series carried out on the selected measurement base of the Wanda Mound. The use of measurement technologies of integrated and specialist software, allows complex assessment of the degree of deformation and the trends of these changes in time, as well as identifying anomaly zones in the framework of the landslide monitoring.


Sign in / Sign up

Export Citation Format

Share Document