scholarly journals Feature Extraction and Mapping Construction for Mobile Robot via Ultrasonic MDP and Fuzzy Model

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3673 ◽  
Author(s):  
Zhili Long ◽  
Ronghua He ◽  
Yuxiang He ◽  
Haoyao Chen ◽  
Zuohua Li

This paper presents a modeling approach to feature classification and environment mapping for indoor mobile robotics via a rotary ultrasonic array and fuzzy modeling. To compensate for the distance error detected by the ultrasonic sensor, a novel feature extraction approach termed “minimum distance of point” (MDP) is proposed to determine the accurate distance and location of target objects. A fuzzy model is established to recognize and classify the features of objects such as flat surfaces, corner, and cylinder. An environmental map is constructed for automated robot navigation based on this fuzzy classification, combined with a cluster algorithm and least-squares fitting. Firstly, the platform of the rotary ultrasonic array is established by using four low-cost ultrasonic sensors and a motor. Fundamental measurements, such as the distance of objects at different rotary angles and with different object materials, are carried out. Secondly, the MDP feature extraction algorithm is proposed to extract precise object locations. Compared with the conventional range of constant distance (RCD) method, the MDP method can compensate for errors in feature location and feature matching. With the data clustering algorithm, a range of ultrasonic distances is attained and used as the input dataset. The fuzzy classification model—including rules regarding data fuzzification, reasoning, and defuzzification—is established to effectively recognize and classify the object feature types. Finally, accurate environment mapping of a service robot, based on MDP and fuzzy modeling of the measurements from the ultrasonic array, is demonstrated. Experimentally, our present approach can realize environment mapping for mobile robotics with the advantages of acceptable accuracy and low cost.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Lev V. Utkin

A fuzzy classification model is studied in the paper. It is based on the contaminated (robust) model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Markus Bajones ◽  
David Fischinger ◽  
Astrid Weiss ◽  
Daniel Wolf ◽  
Markus Vincze ◽  
...  

We present the robot developed within the Hobbit project, a socially assistive service robot aiming at the challenge of enabling prolonged independent living of elderly people in their own homes. We present the second prototype (Hobbit PT2) in terms of hardware and functionality improvements following first user studies. Our main contribution lies within the description of all components developed within the Hobbit project, leading to autonomous operation of 371 days during field trials in Austria, Greece, and Sweden. In these field trials, we studied how 18 elderly users (aged 75 years and older) lived with the autonomously interacting service robot over multiple weeks. To the best of our knowledge, this is the first time a multifunctional, low-cost service robot equipped with a manipulator was studied and evaluated for several weeks under real-world conditions. We show that Hobbit’s adaptive approach towards the user increasingly eased the interaction between the users and Hobbit. We provide lessons learned regarding the need for adaptive behavior coordination, support during emergency situations, and clear communication of robotic actions and their consequences for fellow researchers who are developing an autonomous, low-cost service robot designed to interact with their users in domestic contexts. Our trials show the necessity to move out into actual user homes, as only there can we encounter issues such as misinterpretation of actions during unscripted human-robot interaction.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
S. Sakinah S. Ahmad ◽  
Witold Pedrycz

The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.


Author(s):  
Ke Li ◽  
Yalei Wu ◽  
Shimin Song ◽  
Yi sun ◽  
Jun Wang ◽  
...  

The measurement of spacecraft electrical characteristics and multi-label classification issues are generally including a large amount of unlabeled test data processing, high-dimensional feature redundancy, time-consumed computation, and identification of slow rate. In this paper, a fuzzy c-means offline (FCM) clustering algorithm and the approximate weighted proximal support vector machine (WPSVM) online recognition approach have been proposed to reduce the feature size and improve the speed of classification of electrical characteristics in the spacecraft. In addition, the main component analysis for the complex signals based on the principal component feature extraction is used for the feature selection process. The data capture contribution approach by using thresholds is furthermore applied to resolve the selection problem of the principal component analysis (PCA), which effectively guarantees the validity and consistency of the data. Experimental results indicate that the proposed approach in this paper can obtain better fault diagnosis results of the spacecraft electrical characteristics’ data, improve the accuracy of identification, and shorten the computing time with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document