scholarly journals Fatigue Crack Evaluation with the Guided Wave–Convolutional Neural Network Ensemble and Differential Wavelet Spectrogram

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
Jian Chen ◽  
Wenyang Wu ◽  
Yuanqiang Ren ◽  
Shenfang Yuan

On-line fatigue crack evaluation is crucial for ensuring the structural safety and reducing the maintenance costs of safety-critical systems. Among structural health monitoring (SHM), guided wave (GW)-based SHM has been deemed as one of the most promising techniques. However, the traditional damage index-based method and machine learning methods require manual processing and selection of GW features, which depend highly on expert knowledge and are easily affected by complicated uncertainties. Therefore, this paper proposes a fatigue crack evaluation framework with the GW–convolutional neural network (CNN) ensemble and differential wavelet spectrogram. The differential time–frequency spectrogram between the baseline signal and the monitoring signal is processed as the CNN input with the complex Gaussian wavelet transform. Then, an ensemble of CNNs is trained to jointly determine the crack length. Real fatigue tests on complex lap joint structures were carried out to validate the proposed method, in which several structures were tested preliminarily for collecting the training dataset and a new structure was adopted for testing. The root mean square error of the training dataset is 1.4 mm. Besides, the root mean square error of the evaluated crack length in the testing lap joint structure was 1.7 mm, showing the effectiveness of the proposed method.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3533 ◽  
Author(s):  
Hongyang Guo ◽  
Yangjie Xu ◽  
Qing Li ◽  
Shengping Du ◽  
Dong He ◽  
...  

In the adaptive optics (AO) system, to improve the effectiveness and accuracy of wavefront sensing-less technology, a phase-based sensing approach using machine learning is proposed. In contrast to the traditional gradient-based optimization methods, the model we designed is based on an improved convolutional neural network. Specifically, the deconvolution layer, which reconstructs unknown input by measuring output, is introduced to represent the phase maps of the point spread functions at the in focus and defocus planes. The improved convolutional neural network is utilized to establish the nonlinear mapping between the input point spread functions and the corresponding phase maps of the optical system. Once well trained, the model can directly output the aberration map of the optical system with good precision. Adequate simulations and experiments are introduced to demonstrate the accuracy and real-time performance of the proposed method. The simulations show that even when atmospheric conditions D/r0 = 20, the detection root-mean-square of wavefront error of the proposed method is 0.1307 λ, which has a better accuracy than existing neural networks. When D/r0 = 15 and 10, the root-mean-square error is respectively 0.0909 λ and 0.0718 λ. It has certain applicative value in the case of medium and weak turbulence. The root-mean-square error of experiment results with D/r0 = 20 is 0.1304 λ, proving the correctness of simulations. Moreover, this method only needs 12 ms to accomplish the calculation and it has broad prospects for real-time wavefront sensing.


2017 ◽  
Vol 76 (9) ◽  
pp. 2413-2426 ◽  
Author(s):  
Seef Saadi Fiyadh ◽  
Mohammed Abdulhakim AlSaadi ◽  
Mohamed Khalid AlOmar ◽  
Sabah Saadi Fayaed ◽  
Ako R. Hama ◽  
...  

Abstract The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb2+. Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R2) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R2 of 0.9956 with MSE of 1.66 × 10−4. The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 53
Author(s):  
Joohwan Sung ◽  
Sungmin Han ◽  
Heesu Park ◽  
Hyun-Myung Cho ◽  
Soree Hwang ◽  
...  

The joint angle during gait is an important indicator, such as injury risk index, rehabilitation status evaluation, etc. To analyze gait, inertial measurement unit (IMU) sensors have been used in studies and continuously developed; however, they are difficult to utilize in daily life because of the inconvenience of having to attach multiple sensors together and the difficulty of long-term use due to the battery consumption required for high data sampling rates. To overcome these problems, this study propose a multi-joint angle estimation method based on a long short-term memory (LSTM) recurrent neural network with a single low-frequency (23 Hz) IMU sensor. IMU sensor data attached to the lateral shank were measured during overground walking at a self-selected speed for 30 healthy young persons. The results show a comparatively good accuracy level, similar to previous studies using high-frequency IMU sensors. Compared to the reference results obtained from the motion capture system, the estimated angle coefficient of determination (R2) is greater than 0.74, and the root mean square error and normalized root mean square error (NRMSE) are less than 7° and 9.87%, respectively. The knee joint showed the best estimation performance in terms of the NRMSE and R2 among the hip, knee, and ankle joints.


2021 ◽  
Vol 29 (3) ◽  
pp. 368-380
Author(s):  
Cristina Ghinea ◽  
Petronela Cozma ◽  
Maria Gavrilescu

Neural network time series (NNTS) tool was used to predict municipal solid waste composition in Iasi, Romania. The nonlinear input output (NIO) time series model and nonlinear autoregressive model with external (exogenous) input (NARX) included in this tool were selected. The coefficient of determination (R2) and root mean square error (RMSE) were chosen for evaluation. By applying NIO, the optimum model is 4-11-6 artificial neural network (ANN, R2 = 0.929) in the case of testing as for the validation, with all 0.849 and 0.885, respectively. Applying NARX, the suitable model became 4-13-6 ANN model, with R2 = 0.999 for training, 0.879 for testing, and 0.931, respectively 0.944 for validation and all. The resulted RMSE is zero for training and 0.0109 for validation in the case of this model which had 4 inputs, 13 neurons and 6 outputs. The four input variables were: number of residents, population aged 15–59 years, urban life expectancy, total municipal solid waste (ton/year). The suitable ANN model revealed the lowest root mean square error and the highest coefficient of determination. Results indicate that NNTS tool is a complex instrument, NARX is more accurate than NIO model, and can be used and applied easily.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3567 ◽  
Author(s):  
Xu ◽  
Yuan ◽  
Chen ◽  
Ren

Fatigue crack diagnosis (FCD) is of great significance for ensuring safe operation, prolonging service time and reducing maintenance cost in aircrafts and many other safety-critical systems. As a promising method, the guided wave (GW)-based structural health monitoring method has been widely investigated for FCD. However, reliable FCD still meets challenges, because uncertainties in real engineering applications usually cause serious change both to the crack propagation itself and GW monitoring signals. As one of deep learning methods, convolutional neural network (CNN) owns the ability of fusing a large amount of data, extracting high-level feature expressions related to classification, which provides a potential new technology to be applied in the GW-structural health monitoring method for crack evaluation. To address the influence of dispersion on reliable FCD, in this paper, a GW-CNN based FCD method is proposed. In this method, multiple damage indexes (DIs) from multiple GW exciting-acquisition channels are extracted. A CNN is designed and trained to further extract high-level features from the multiple DIs and implement feature fusion for crack evaluation. Fatigue tests on a typical kind of aircraft structure are performed to validate the proposed method. The results show that the proposed method can effectively reduce the influence of uncertainties on FCD, which is promising for real engineering applications.


2021 ◽  
Author(s):  
O.N. Cheremisinova ◽  
V.S. Rostovtsev

In any convolutional neural network (CNN), there are hyperparameters - parameters that are not configured during training, but are set at the time of building the СNN model. Their choice affects the quality of the neural network. To date, there are no uniform rules for setting parameters. Hyperparameters can be adjusted fairly accurately using manual tuning. There are also automatic methods for optimizing hyperparameters. Their use reduces the complexity of the neural network tuning, and does not require experience and knowledge of hyperparameter optimization. The purpose of this article is to analyze automatic methods for selecting hyperparameters to reduce the complexity of the process of tuning a CNN. Optimization methods. Several automatic methods for selecting hyperparameters are considered: grid search, random search, modelbased optimization (Bayesian and evolutionary). The most promising are methods based on a certain model. These methods are used in the absence of an expression for the objective optimization function, but it is possible to obtain its observations (possibly with noise) for the selected values. Bayesian theory involves finding a trade-off between exploration (suggesting hyperparameters with high uncertainty that can give a noticeable improvement) and use (suggesting hyperparameters that are likely to work as well as what she has seen before – usually values that are very close to those observed before). Evolutionary optimization is based on the principle of genetic algorithms. A combination of hyperparameter values is taken as an individual of a population, and recognition accuracy on a test sample is taken as a fitness function. By crossing, mutation and selection, the optimal values of the neural network hyperparameters are selected. The authors have proposed a hybrid method, the algorithm of which combines Bayesian and evolutionary optimization. At the beginning, the neural network is tuned using the Bayesian method, then the first generation in the evolutionary method is formed from the N best options of parameters, which further continues the neural network tuning. An experimental study of the optimization of hyperparameters of a convolutional neural network by Bayesian, evolutionary and hybrid methods is carried out. In the process of optimization by the Bayesian method, 112 different architectures of the convolutional neural network were considered, the root-mean-square error on the validation set of which ranged from 1629 to 11503. As a result, the CNN with the smallest error was selected, the RMSE of which on the test data was 55. At the beginning of evolutionary optimization, they were randomly 8 different CNN architectures were generated with the root mean square error on the validation data from 2587 to 3684. In the process of optimization by this method, within 14 generations, CNNs were obtained with new sets of hyperparameters, the error on the validation data of which decreased to values from 1424 to 1812. As a result, the CNN with the smallest error was selected, the RMSE of which was 48 on the test data. The hybrid method combines the advantages of both methods and allows finding an architecture no worse than the Bayesian and evolutionary methods. When optimizing by this method, the optimal architecture of the CNN was obtained (the architecture in which the CNN on the validation data has the smallest root-mean-square error), the RMSE of which on the test data was 49. The results show that the quality of optimization for all three methods is approximately the same. Bayesian approach considers the entire hyperparameter space. To obtain greater accuracy with the Bayesian method, you need to increase the CNN optimization time with this method. The evolutionary algorithm selects the best combinations of hyperparameters from the initial population, so the initially generated population plays a big role. In addition, due to the peculiarities of the algorithm, this method is prone to falling into a local extremum. However, this algorithm is well parallelized, so the optimization process with this method can be accelerated. The hybrid method combines the advantages of both methods and allows you to find an architecture that is no worse than Bayesian and evolutionary methods. The experiments carried out show that the considered optimization methods on problems similar to the one considered will achieve approximately the same quality of neural network tuning with a relatively small size of the CNN. The presented results make it possible to choose one of the considered methods for optimizing hyperparameters when developing a CNN, based on the specifics of the problem being solved and the available resources.


SEMINASTIKA ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 79-85
Author(s):  
Okky Barus ◽  
Christopher Wijaya

Pada era saat ini, Investasi saham di pasar modal merupakan aset yang sangat penting bagi beberapa golongan masyarakat dan juga bagi perusahaan. Dengan adanya investasi, secara langsung maupun tidak langsung dapat memberikan dampak bagi perusahaan maupun bagi masyarakat. Penelitian ini bertujuan untuk memprediksi Indeks Harga Saham Gabungan (IHSG) dengan indeks saham: Jakarta Composite Index (JKSE). Metode yang digunakan pada penelitian ini adalah Neural Network Backpropagation. Pengumpulan dataset melalui website finance.yahoo.com dengan periode 8 Mei 2018 sampai dengan 7 Mei 2021 sebanyak 757 data. Setelah melakukan proses pengolahan data, data yang tersisa adalah 724 data. Kemudian data akan dibagi menjadi 70% data training dan 30% data testing yang akan digunakan pada proses pengolahan data. Hasil pengujian menggunakan metode Neural Newtwork Backpropagation mendapatkan hasil terbaik menggunakan Kondisi ke-10 dengan nilai Root Mean Square Error (RMSE) senilai 0.010. Kemudian akan didapatkan hasil perbandingan antara harga Close aktual dengan harga Close prediksi dengan akurasi sebesar 63.06% yang dapat membantu dalam pengambilan keputusan para investor.


Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 144-151
Author(s):  
S.E. Adebayo ◽  
N. Hashim

In this study, the application of laser imaging technique was utilized to predict the quality attributes (firmness and soluble solids content) of pear fruit and to classify the maturity stages of the fruit harvested at different days after full bloom (dafb). Laser imaging system emitting at visible and near infra-red region (532, 660, 785, 830 and 1060 nm) was deployed to capture the images of the fruit. Optical properties (absorption ma and reduced scattering ms ʹ coefficients) at individual and combined wavelengths of the laser images of the fruit were used in the prediction and classifications of the maturity stages. Artificial neural network (ANN) was employed in the building of both prediction and classification models. Root mean square error of calibration (RMSEC), root mean square error of crossvalidation (RMSECV), correlation coefficient (r) and bias were used to test the performance of the prediction models while sensitivity and specificity were used to evaluate the classification models. The results showed that there was a very strong correlation between the ma and ms ʹ with pear development. This study had shown that optical properties of pears with ANN as prediction and classification models can be employed to both predict quality parameters of pear and classify pear into different (dafb) non-destructively.


Repositor ◽  
2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Rifky Ahmad Saputra

Pada saat ini persaingan bisnis dalam bidang layanan kargo khususnya di Indonesia semakin ketat. Terdapat beberapa perusahaan layanan kargo di Indonesia, salah satunya yaitu Cargo Service Center Tangerang City. Untuk mengantisipasi persaingan bisnis tersebut, Cargo Service Center Tangerang City harus dapat menentukan strategi manajemen usaha, baik dalam jangka menengah maupun jangka panjang. Salah satunya hal yang dapat dilakukan yaitu prediksi permintaan kargo. Pada Cargo Service Center Tangerang City terdapat data transaksi kargo mulai dari Januari 2016 hingga Septermber 2019, oleh karena itu dilakukanlah penelitian yaitu mengimplementasikan metode Gated Recurrent Unit untuk melakukan prediksi permintaan kargo. metode Gated Recurrent Unit merupakan model pengembangan dari Recurrent Neural Network yang biasa digunakan untuk melakukan prediksi pada data sekuens. Pengujian model prediksi dalam penelitian ini dilakukan dengan mencari nilai Root Mean Square Error terkecil dari beberapa percobaan. Hasil dari penelitian ini menunjukkan bahwa model cukup baik dalam melakukan prediksi permintaan kargo, namun terdapat beberapa hasil prediksi metode Gated Recurrent Unit yang masih belum maksimal mendekati nilai aktual misalnya pada nilai aktual yang berada di titik puncak.


2019 ◽  
Author(s):  
Amrin Amrin

Tingkat inflasi tidak dapat dianggap remeh dalam sistem perekonomian suatu negara dan pelaku bisnis pada umumnya. Jika inflasi dapat diramalkan dengan akurasi yang tinggi, tentunya dapat dijadikan dasar pengambilan kebijakan pemerintah dalam mengantisipasi aktivitas ekonomi di masa depan. Pada penelitian ini akan digunakan metode prediksi neural network backpropagation dan multiple linear regression untuk memprediksi tingkat inflasi bulanan di indonesia, selanjutnya membandingkan manakah yang terbaik dari kedua metode tersebut. Data inflasi yang digunakan bersumber dari Badan Pusat Statistik dari tahun 2006-2015, dimana 80% sebagai data training dan 20% sebagai data testing. Dari hasil analisis data yang dilakukan disimpulkan bahwa Performa model multiple linear regression lebih baik dibandingkan dengan metode neural network backpropagation dengan nilai mean absolute deviation (MAD) sebesar 0.0380, mean square error (MSE) sebesar 0.0023, dan nilai Root Mean Square Error (RMSE) sebesar 0.0481


Sign in / Sign up

Export Citation Format

Share Document