scholarly journals Development of a Screen-Printable Carbon Paste to Achieve Washable Conductive Textiles

Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 419-432
Author(s):  
Sheng Yong ◽  
Meijing Liu ◽  
Abiodun Komolafe ◽  
John Tudor ◽  
Kai Yang

Conductive tracks are key constituents of wearable electronics and e-textiles, as they form the interconnective links between wearable electrical devices/systems. They are made by coating or printing conductive patterns or tracks on textiles or by weaving, knitting, or embroidering conductive yarns into textiles. Screen printing is a mature and cost-effective fabrication method that is used in the textile industry. It allows a high degree of geometric freedom for the design of conductive patterns or tracks. Current screen-printed conductive textiles have the limitations of low durability when washed or when placed under bending, and they typically require encapsulation layers to protect the printed conductor. This paper presents a printable paste formulation and fabrication process based on screen printing for achieving a flexible and durable conductive polyester–cotton textile using an inexpensive carbon as the conductor. The process does not require an interface, the smoothing of the textile, or an encapsulation layer to protect the conductor on the textile. A resistivity of 4 × 10−2 Ω·m was achieved. The textile remains conductive after 20 standard washes, resulting in the conductor’s resistance increasing by 140%. The conductive textile demonstrated less than ±10% resistance variation after bending for 2000 cycles.

2020 ◽  
pp. 152808372091441
Author(s):  
Gizem Kayabaşı ◽  
Özgü Özen ◽  
Demet Yılmaz

Electronic or conductive textiles have attracted particular attention because of their potential applications in the fields of energy storage, supercapacitors, solar cells, health care devices, etc. Contrary to solid materials, the properties of textile materials such as stretchability, foldability, washability, etc. make the textiles ideal support materials for electronic devices. Therefore, in recent years, various conductive materials and production methods have been researched extensively to make the textiles conductive. In the present study, an alternative method based on imparting the conductivity to the fiber-based structure for the production of conductive textiles was established. Considering the contribution of unique characteristics of the fiber-based structure to the clothing systems, imparting the conductivity to the fibrous structure before yarn and fabric production may help to protect the breathable, lightweight, softness, deformable and washable of textile structure, and hence to improve the wearability properties of the electronic textiles. In the study, carbon black nanoparticles were selected as a conductive material due to low cost and easy procurable while cotton fiber together with other fiber types such as polyester, acrylic and viscose rayon fibers were used due to their common usage in the textile industry. In addition, various production parameters (CB concentration, feeding rate, etc.) were analyzed and the results indicated that the developed alternative method is capable to produce conductive yarns and electrical resistance of the yarns was about 94–4481 kΩ. The yarns had comparable yarn tenacity and breaking elongation properties, and still carried conductive character even after washing. In literature, there has been no effort to get conductivity in this manner and the method can be considered to be a new application for added-on or built-in future wearable electronics. Also, in the study, produced conductive yarns were used as a collector to gather the nanofibers onto the yarn to produce hybrid yarns enabling the production of functional textile products.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Filip Govaert ◽  
Myriam Vanneste

Electrical conductive textile coatings with variable amounts of carbon nanotubes (CNTs) are presented. Formulations of textile coatings were prepared with up to 15 wt % of CNT, based on the solid weight of the binder. The binders are water based polyacrylate dispersions. The CNTs were mixed into the binder dispersion starting from a commercially available aqueous CNT dispersion that is compatible with the binder dispersion. Coating formulations with variable CNT concentrations were applied on polyester and cotton woven and knitted fabrics by different textile coating techniques: direct coating, transfer coating, and screen printing. The coatings showed increasing electrical conductivity with increasing CNT concentration. The coatings can be regarded to be electrically conductive(sheet resistivity<103 Ohm/sq)starting at 3 wt% CNT. The degree of dispersion of the carbon nanotubes particles inside the coating was visualized by scanning electron microscopy. The CNT particles form honeycomb structured networks in the coatings, proving a high degree of dispersion. This honeycomb structure of CNT particles is forming a conductive network in the coating leading to low resistivity values.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3313 ◽  
Author(s):  
Josue Ferri ◽  
Clara Perez Fuster ◽  
Raúl Llinares Llopis ◽  
Jorge Moreno ◽  
Eduardo Garcia‑Breijo

Many types of solutions have been studied and developed in order to give the user feedback when using touchpads, buttons, or keyboards in textile industry. Their application on textiles could allow a wide range of applications in the field of medicine, sports or the automotive industry. In this work, we introduce a novel solution that combines a 2D touchpad with an electroluminescent display (ELD). This approach physically has two circuits over a flexible textile substrate using the screen-printing technique for wearable electronics applications. Screen-printing technology is widely used in the textile industry and does not require heavy investments. For the proposed solution, different layer structures are presented, considering several fabric materials and inks, to obtain the best results.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


2021 ◽  
Vol 11 (9) ◽  
pp. 3914
Author(s):  
Chi-Wai Kan ◽  
Yin-Ling Lam

Smart wearable textiles can sense, react, and adapt themselves to external conditions or stimuli, and they can be divided into active and passive smart wearable textiles, which can work with the human brain for cognition, reasoning, and activating capacity. Wearable technology is among the fastest growing parts of health, entertainment, and education. In the future, the development of wearable electronics will be focused on multifunctional, user-friendly, and user acceptance and comfort features and shall be based on advanced electronic textile systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Amitava Ghosh ◽  
Prithviraj Chakraborty

Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects.Methods. Ionotropic Gelation technique was adopted employing 32Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and Acrycoat E30D (copolymer) dispersion.Result. Sodium alginate was predominant over Acrycoat E30D in all batches. Nonadditives or interaction was observed to be insignificant. Multiple regressions produced second-order polynomial equation, and the predictive results obtained were validated with high degree of correlation. Thein vivostudy applauded that optimized calcium alginate micropellets of frusemide can produce a much greater diuretic effect over an extended period of 24 hours.Conclusion. This study reveals that the potential of a single dose of the mathematically optimized micro pellets of frusemide formulation is sufficient in the management of peripheral edema and ascites in congestive heart failure and as well in the treatment of chronic hypertension, leading to better patient compliance, and can be produced with minimum experimentation and time, proving far more cost-effective formulation than the conventional methods of formulating dosage forms.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2018 ◽  
Vol 89 (5) ◽  
pp. 881-890 ◽  
Author(s):  
Su Liu ◽  
Yanping Liu ◽  
Li Li

Conductive yarn is the key factor in fabricating electronic textiles. Generally, three basic fabric production methods (knit, woven, and non-woven) combined with two finishing processes (embroidery and print) are adopted to embed conductive yarns into fabrics to achieve flexible electronic textiles. Conductive yarns with knit structure are the most flexible and effective form of electronic textiles. Electronic textiles present many advantages over conventional electronics. However, in the process of commercialization of conductive knitted fabrics, it is a great challenge to control the complicated resistive networks in conductive knitted fabrics for the purpose of cost saving and good esthetics. The resistive networks in conductive knitted fabrics contain length-related resistance and contact resistance. The physical forms of conductive yarns in different fabrication structures can be very different and, thus, the contact resistance varies greatly in different fabrics. So far, study of controlling the resistive property of conductive fabrics has not been conducted. Therefore, establishing a systematic method for the industry as a reference source to produce wearable electronics is in great demand. During the industrialization of conductive knitted fabrics, engineers can estimate the resistive property of the fabric in advance, which makes the production process more effective and cost efficient. What is more, the resistive distribution in the same area of knitted fabrics can be fully controlled.


Author(s):  
P A Bracewell ◽  
U R Klement

Piping design for ‘revamp’ projects in the process industry requires the retrieval of large amounts of ‘as-built’ data from existing process plant installations. Positional data with a high degree of accuracy are required. Photogrammetry, the science of measurement from photographs, was identified in Imperial Chemical Industries plc (ICI) as a suitable tool for information retrieval. The mathematical formulation enabling the definition of three-dimensional positions from photographic information is described. The process of using ICI's photogrammetric system for the definition of complete objects such as structures and pipes is illustrated. The need for specialized photogrammetric software for design purposes is explained. A case study describing how the photogrammetric system has been applied is described and graphical outputs from this exercise are shown. It is concluded that this particular photogrammetric system has proved to be a cost effective and accurate tool for the retrieval of ‘as-built’ information.


2020 ◽  
Vol 14 (2) ◽  
pp. 213
Author(s):  
Valentinus Galih Vidia Putra ◽  
Lutfi Zulfikar ◽  
Atin Sumihartanti ◽  
Juliany Ningsih Mohamad ◽  
Yusril Yusuf

This study aims to develop conductive textile materials using a polyester textile yarn by applying a knife coating method and pre-treatment of a tip-cylinder plasma electrode. In this research, carbon ink was coated on polyester staple yarn which was given a pre-treatment with a plasma generator and coated with the knife coating method. The electrical conductivity of conductive yarns produced from this study was divided into two types, as yarns without plasma treatment and with plasma treatment with a ratio of water and carbon ink concentrations of 1:1 and 2:1. The results of the electrical conductivity with plasma treatment and the concentration of carbon ink and water of 1:1 and 1:2 were 69005 (Ωm)-1 and 50144.25 (Ωm)-1, respectively, while the results of the electrical conductivity for threads with concentrations of carbon ink and water of 1:1 and 1:2 without plasma treatment were 18197.64 (Ωm)­‑1  and 8873.54 (Ωm)-1, respectively. The results showed that the concentration of carbon ink and water and plasma treatment affected the conductive value of the yarn. The results also showed that the presence of plasma pre-treatment improved the coating process of conductive ink on the yarn.Keywords: carbon ink; conductive yarn; plasma; textile A B S T R A KPenelitian ini bertujuan untuk mengembangkan bahan tekstil konduktif menggunakan benang tekstil poliester dengan mengaplikasikan metode knife coating dan pre-treatment plasma elektroda tip-cylinder. Pada penelitian ini dilakukan pelapisan dengan tinta karbon pada benang poliester stapel yang diberi perlakuan awal dengan plasma generator dan dilapisi dengan metode pelapisan knife coating. Konduktivitas listrik benang konduktif yang dihasilkan dari penelitian ini dibagi menjadi dua jenis, yaitu benang tanpa perlakuan plasma dan dengan perlakuan plasma dengan perbandingan konsentrasi air dan tinta karbon sebesar 1:1 dan 2:1. Hasil konduktivitas listrik dengan perlakuan plasma dan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 masing-masing adalah 69005 (Ωm)‑1 dan 50144,25 (Ωm)-1, sedangkan hasil konduktivitas listrik untuk benang dengan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 tanpa perlakuan plasma masing-masing adalah 18197,64 (Ωm)-1 dan 8873,54 (Ωm)-1. Hasil penelitian menunjukkan bahwa konsentrasi tinta karbon dan air serta perlakuan plasma berpengaruh terhadap nilai konduktivitas benang serta adanya pre-treatment plasma dapat meningkatkan proses coating tinta konduktif pada benang.Kata kunci: benang konduktif; plasma; tekstil; tinta karbon 


Sign in / Sign up

Export Citation Format

Share Document