scholarly journals Lipolytic Activity of a Carboxylesterase from Bumblebee(Bombus ignitus) Venom

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 239
Author(s):  
Yijie Deng ◽  
Bo Yeon Kim ◽  
Kyeong Yong Lee ◽  
Hyung Joo Yoon ◽  
Hu Wan ◽  
...  

Bee venom is a complex mixture composed of peptides, proteins with enzymatic properties, and low-molecular-weight compounds. Although the carboxylesterase in bee venom has been identified as an allergen, the enzyme’s role as a venom component has not been previously elucidated. Here, we show the lipolytic activity of a bumblebee (Bombus ignitus) venom carboxylesterase (BivCaE). The presence of BivCaE in the venom secreted by B. ignitus worker bees was confirmed using an anti-BivCaE antibody raised against a recombinant BivCaE protein produced in baculovirus-infected insect cells. The enzymatic activity of the recombinant BivCaE protein was optimal at 40 °C and pH 8.5. Recombinant BivCaE protein degrades triglycerides and exhibits high lipolytic activity toward long-chain triglycerides, defining the role of BivCaE as a lipolytic agent. Bee venom phospholipase A2 binds to mammalian cells and induces apoptosis, whereas BivCaE does not affect mammalian cells. Collectively, our data demonstrate that BivCaE functions as a lipolytic agent in bee venom, suggesting that BivCaE will be involved in distributing the venom via degradation of blood triglycerides.

Author(s):  
Souad El Gengaihi ◽  
Doha H. Abou Baker

Interest in the biological role of bioactive compounds present in medicinal herbs has increased over the last years. Of particular interest are plants that have an anti-Alzheimer activities. Several plants can be useful for Alzheimer (AD) management. Such as these which have anti-inflammatory activity, acetylcholinesterase (AChE) inhibitory action, antiapoptotic, slow the aggregation of amyloid peptide and antioxidant activities. Grape seed extract (GSE) is a complex mixture of several compounds, mostly represented by polyphenols and flavonoids. Their consumption is safe and is recognized to exert several health benefits. GS flavonoids have been associated with the reduced risk of chronic diseases, we present some findings on the potential benefits of GSE for the treatment of AD.


2020 ◽  
Vol 27 (6) ◽  
pp. 955-982 ◽  
Author(s):  
Kyoung Sang Cho ◽  
Jang Ho Lee ◽  
Jeiwon Cho ◽  
Guang-Ho Cha ◽  
Gyun Jee Song

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.


Author(s):  
Vikash Kumar Gupta ◽  
Buthaina Mohammad Alkandari ◽  
Wasif Mohammed ◽  
Mohsen Ahmed Abdelmohsen ◽  
Mohammad Gaber Abdullah Mohammad

AbstractStudies available in the literature have shown alterations in blood coagulation tests in severe cases of COVID-19 pneumonia, with a significant risk of venous thromboembolism (VTE). Since microvascular thrombosis is a well-known fact in COVID-19 disease, requiring therapeutic anticoagulation, low-molecular weight heparin (LMWH) in prophylactic dose is a part of the clinical management of hospitalized COVID-19 patients. In this scenario, we describe three cases of abdominal spontaneous retroperitoneal hematoma (SRH) in hospitalized reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 patients.


2021 ◽  
Vol 22 (2) ◽  
pp. 501
Author(s):  
Kateřina Skopalová ◽  
Katarzyna Anna Radaszkiewicz ◽  
Věra Kašpárková ◽  
Jaroslav Stejskal ◽  
Patrycja Bober ◽  
...  

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Author(s):  
Abhishek Mohanty ◽  
Rodolfo Zunino ◽  
Vincent Soubannier ◽  
Shilpa Dilipkumar

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2887
Author(s):  
Kena Li ◽  
Jens Prothmann ◽  
Margareta Sandahl ◽  
Sara Blomberg ◽  
Charlotta Turner ◽  
...  

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170–210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.


Sign in / Sign up

Export Citation Format

Share Document