Faculty Opinions recommendation of Biochemical characterization of the zinc-finger protein 217 transcriptional repressor complex: identification of a ZNF217 consensus recognition sequence.

Author(s):  
Vitaly Citovsky
Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 905-916 ◽  
Author(s):  
M Crozatier ◽  
K Kongsuwan ◽  
P Ferrer ◽  
J R Merriam ◽  
J A Lengyel ◽  
...  

Abstract The Drosophila serendipity (sry) delta (delta) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry delta gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry delta thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry delta hemizygote escaper males further suggests that sry delta may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry delta alleles are fully rescued by a wild-type copy of sry delta, but not by an additional copy of the sry beta gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry delta mutations revealed that these mutations correspond to single amino acid replacements in the sry delta protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH2-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions.


1995 ◽  
Vol 28 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Brian W. Tague ◽  
Howard M. Goodman

Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


Sign in / Sign up

Export Citation Format

Share Document