scholarly journals Bioethanol production of second generation from corn cob

Author(s):  
Fabiola Sandoval-Salas ◽  
Carlos Méndez-Carreto ◽  
Christell Barrales-Fernández ◽  
Graciela Ortega-Avila

Bioethanol production from lignocellulosic materials has several environmental and economic advantages. In this work, corn cob was used to produce ethanol by fermentation. The cob was grounded, hydrolyzed chemically, and then enzymatically. Later, hydrolysates were used as a carbon source to formulate culture media that were inoculated with Saccharomyces cerevisiae; hollocellulose content was quantified by the ASTM D-1104 method; cellulose content by the TAPPTI 212 method; lignin content by the NREL / TP-510-42618 method; and ethanol was quantified by HPLC. In fermentation, bioethanol yields of up to 3.5 g / L were found, equivalent to YP/S value of 0.46, representing approximately 90% of the theoretical yield.

2013 ◽  
Vol 6 (1) ◽  
pp. 168 ◽  
Author(s):  
Lorenzo Favaro ◽  
Marina Basaglia ◽  
Alberto Trento ◽  
Eugéne Van Rensburg ◽  
Maria García-Aparicio ◽  
...  

2009 ◽  
Vol 75 (18) ◽  
pp. 5840-5845 ◽  
Author(s):  
Jürgen Wendland ◽  
Yvonne Schaub ◽  
Andrea Walther

ABSTRACT Synthesis of chitin de novo from glucose involves a linear pathway in Saccharomyces cerevisiae. Several of the pathway genes, including GNA1, are essential. Genes for chitin catabolism are absent in S. cerevisiae. Therefore, S. cerevisiae cannot use chitin as a carbon source. Chitin is the second most abundant polysaccharide after cellulose and consists of N-acetylglucosamine (GlcNAc) moieties. Here, we have generated S. cerevisiae strains that are able to use GlcNAc as a carbon source by expressing four Candida albicans genes (NAG3 or its NAG4 paralog, NAG5, NAG2, and NAG1) encoding a GlcNAc permease, a GlcNAc kinase, a GlcNAc-6-phosphate deacetylase, and a glucosamine-6-phosphate deaminase, respectively. Expression of NAG3 and NAG5 or NAG4 and NAG5 in S. cerevisiae resulted in strains in which the otherwise-essential ScGNA1 could be deleted. These strains required the presence of GlcNAc in the medium, indicating that uptake of GlcNAc and its phosphorylation were achieved. Expression of all four NAG genes produced strains that could use GlcNAc as the sole carbon source for growth. Utilization of a GlcNAc catabolic pathway for bioethanol production using these strains was tested. However, fermentation was slow and yielded only minor amounts of ethanol (approximately 3.0 g/liter), suggesting that fructose-6-phosphate produced from GlcNAc under these conditions is largely consumed to maintain cellular functions and promote growth. Our results present the first step toward tapping a novel, renewable carbon source for biofuel production.


2018 ◽  
Vol 41 (4) ◽  
Author(s):  
Sylvia Enid Vazquez ◽  
Luciana Buxedas ◽  
Silvana Bonifacino ◽  
Maria Belen Ramirez ◽  
Ana Lopez ◽  
...  

ABSTRACT Eucalyptus spp. residues of paper industry are a potential lignocellulosic raw material for production of second-generation bioethanol as an alternative to conventional production from cereal crops. Studying the behavior at 40 ºC of a commercial cellulase (Sunson), Eucalyptus sawdust saccharification was carried out under two pH conditions. With the aim to evaluate the bioethanol production from Eucalyptus wood, a strategy combining saccharification and Simultaneous Saccharification and Fermentation (SSF) was undertaken at 40 ºC with a thermotolerant Saccharomyces cerevisiae with different substrate and inoculum concentrations, and different nitrogen sources. At last, the process was carried out in optimal conditions with Saccharomyces cerevisiae M522 and SacSV-10. Saccharification produced more free glucose at pH 5, reaching a maximum of 1.5 g/L. Encouraging results were obtained with 500 mg/L of ammonium sulphate as a nitrogen source and 10 % v/v initial inoculum at 106 cfu/mL concentration. Yeast SacSV-10 was not inhibited by phenols present in the culture media using a wood concentration of 10 g/L, but when the solids concentration was increased, the bioprocess yield was compromised. When the process was carried out in optimal conditions the bioethanol production, expressed as the conversion percentage of cellulose to ethanol, was 71.5 % and 73.6 % for M522 and the mutant strain respectively. The studied properties of the mutant strain provide added value to it, which pose new challenges to national companies dedicated to the production and sale of inputs for bioethanol industry.


2009 ◽  
Vol 25 ◽  
pp. S263
Author(s):  
C. Kasavi ◽  
I. Finore ◽  
B. Nicolaus ◽  
E. Toksoy Oner ◽  
B. Kirdar ◽  
...  

Author(s):  
Hadiza Musa ◽  
Abdullahi Imam Abdullahi ◽  
Rabi’a Ibrahim El-Yakub ◽  
Ibrahim Alhaji Yerima

Second generation ethanol is produced from non-food based including waste from food crops, wood chips and agricultural residue. Lignocellulosic and starchy materials in them are converted to fermentable sugars which are further processed to produce bioethanol. Rice bran is an agricultural residue with abundant carbohydrate for bioconversion into ethanol. This study was designed to evaluate the potential of two varieties of rice bran (Sipi and Wita) to produce bioethanol. Compositional analysis of Wita rice bran showed 40% cellulose, 23% hemicellulose and 16% lignin content. Sipi variety contains 35% cellulose, 27% hemicellulose and 13% lignin content. Sodium hydroxide pretreatment was carried out at different concentrations (0.5%, 1%, 2% and 3%) and residence time of (15, 30, 60, and 90min). It was observed from the present study, pretreatment of rice bran with 2% NaOH for 90min is considered as effective pretreatment condition for bioethanol production from rice bran. Simultaneous saccharification and fermentation of cellulosic biomass was carried out for 72h with Saccharomyces cerevisae and Mucor indicus. Fermentation of Wita variety with S.cerevisiae produced highest bioethanol yield of 1.36% while Mucor indicus produced 0.75% bioethanol yield. From the result of these findings, it can be concluded that rice bran could be considered as a promising substrate for the fermentation of second generation ethanol.


2020 ◽  
Vol 4 (2) ◽  
pp. 19
Author(s):  
Netty - Herawati

Elephant gass is cattle feed that contains good nutrition. One of its uses is converted into an energy source in the form bioethanol, Elephant grass has a high cellulose content reaching 40,85%, therefore elephant grass has the potential to be used as raw material in manufacture of bioethanol through the process of acid hydrolysis and fermentation. In research on percent yield of bioethanol from elephant grass chemically carried out at fixed conditions : grass weight 100 gr, temperature 100oC, water 1 liter, H2SO4 30 ml, hydrolysis timw 2 hours and conditions change : fermentation time 4,6,8 (day), saccharomyces cerevisiae starter 7%, 9%, 11%, 13%, HCl and H2SO4 catalys. From the research on chemical bioethanol production from elephant grass we got the best percent yield at 6 days of fermentation, 11% saccharomyces cerevisiae, HCl catalys which was 17,30%Keywords: bioethanol, fermentation, elephant grass,


Author(s):  
Andi Hakim ◽  
Ekowati Chasanah ◽  
Uju Uju ◽  
Joko Santoso

Seaweed processing waste has been used for bioethanol production through simultaneous saccharification and fermentation (SSF). SSF is commonly used for bioethanol production to shorten the process and to increase the yield of ethanol produced by Trichoderma reesei and Saccharomyces cerevisiae. The aim of this research was to obtain the best concentration of T. reesei and S. cerevisiae to produce bioethanol by SSF. The concentration of T. reesei and S. cerevisiae used was 0 (control), 5, 10, 15 and 20% (v/v). The SSF process was carried out by using shaking incubator at 35 °C and rotation of 150 rpm for 3 days. The untreated and hot water treated seaweed processing waste used in this study have moisture content values of 12.94±0.08% and 15.38±0.19%, ash content values of 16.72±0.08% and 18.39±0.19%, lignin content values of 15.38±0.11% and 12.74±0.38%, and cellulose content values of 26.92±0.57% and 34.57±0.81%, respectively. The result of SSF process of seaweed processing waste showed that different concentrations of T. reesei and S. cerevisiae (control, 5, 10, 15 and 20%) yielded significant effect (p<0.05) on the total reducing sugars and ethanol produced. The Duncan Multiple Range Test (DMRT) showed that the treatment 10% of T. reesei and S. cerevisiae concentration in the seaweed processing waste treated with hot water was the best treatment producing highest yield of ethanol.


2018 ◽  
Vol 156 ◽  
pp. 01003 ◽  
Author(s):  
Kusmiyati ◽  
Duwi Maryanto ◽  
Ringga Sonifa ◽  
Sabda Aji Kurniawan ◽  
H. Hadiyanto

Starch-Free Sugar Palm Trunk (Arenga pinnata) can be utilized to produce bioethanol because of their high lignocellulosic contents. Production of bioethanol from lignocellulosic materials consist of pre-treatment, saccharification and fermentation processes. In this work, conversion of starch-free sugar palm trunk (Arenga pinnata) to fermentable sugar and bioethanol was carried out through g pretreatment, saccharification and fermentation processes. The pretreatment was carried out by addition of 1% (v/v) HNO3 and NH4OH for 30 min and 60 min, respectively. The saccharification was carried out at enzyme celullase loadings of 10 and 20 FPU/g and substrate loadings of 10 and 20 g for NH4OH pretreated samples. Fermentation was carried out using two methods i.e. separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) techniques. The results showed that pretreatment using NH4OH was more effective than HNO3 for 60 minutes. IFurthermore, the results also presented the reduction of the lignin content of 9.44% and the increase of cellulose content to 18.56% for 1% (v/v) NH4OH 60 min of pretreatment. The increase of enzyme cellulase (20 FPU/g substrate) and substrate loading (20 g) could produce more reducing sugar (17.423 g/L and 19.233 g/L) than that at 10 FPU/g substrate and 10 g substrate (11.423 g/L and 17.423 g/L), respectively. The comparison of SHF and SSF showed that SHF process yielded higher ethanol (8.11 g/L) as compared to SSF (3.95 g/L) and nontreatment process (0.507 g/L) for 72 h..


Sign in / Sign up

Export Citation Format

Share Document