DNA-Tethered RNA Polymerase for Programmable In vitro Transcription and Molecular Computation

Author(s):  
Ryan C. Lee ◽  
Travis R. Douglas ◽  
Leo Y. T. Chou
1982 ◽  
Vol 257 (10) ◽  
pp. 5779-5788 ◽  
Author(s):  
G A Kassavetis ◽  
E T Butler ◽  
D Roulland ◽  
M J Chamberlin

Transcription ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. e27526 ◽  
Author(s):  
Hélène Dumay-Odelot ◽  
Stéphanie Durrieu-Gaillard ◽  
Leyla El Ayoubi ◽  
Camila Parrot ◽  
Martin Teichmann

2021 ◽  
Author(s):  
Julia L Daiß ◽  
Michael Pilsl ◽  
Kristina Straub ◽  
Andrea Bleckmann ◽  
Mona Höcherl ◽  
...  

Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP-fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This "dock II" domain resembles a truncated HMG-box incapable of DNA-binding which may serve as a downstream-transcription factor binding platform in metazoans. Biochemical analysis and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG-box domain containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.


1986 ◽  
Vol 6 (9) ◽  
pp. 3278-3282
Author(s):  
D P Carlson ◽  
J Ross

A base substitution in the 5'-flanking region of a human fetal globin gene is associated with abnormal fetal hemoglobin production. It also reduces by 5- to 10-fold in vitro transcription of the gene by RNA polymerase III. We discuss potential links between polymerase III transcription and abnormal hemoglobin production.


Sign in / Sign up

Export Citation Format

Share Document