scholarly journals Varroa destructor mite in Africanized honeybee colonies Apis mellifera L. under royal jelly or honey production

2015 ◽  
Vol 37 (3) ◽  
pp. 315
Author(s):  
Pedro Da Rosa Santos ◽  
Priscila Wielewski ◽  
Andre Luiz Halak ◽  
Patrícia Faquinello ◽  
Vagner De Alencar Arnaut de Toledo
Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 966
Author(s):  
Diego Masaquiza ◽  
Junior Vargas ◽  
Nelsón Ortíz ◽  
Rodrigo Salazar ◽  
Lino Curbelo ◽  
...  

The aim of this research was to analyze the relationship among hygienic behavior (HB), Varroa destructor infestation, and honey production in the central highlands of Ecuador. Overall, 75 honey bee colonies were evaluated before, during, and after production at three altitude levels (2600–2800, 2801–3000, and >3000 m.a.s.l.). The hygienic behavior percentage of the colonies was determined by the pin-killing method, and the colonies were classified into three groups: high HB (>85%), mid HB (60.1–85%), and low HB (≤60%). Varroa infestation was diagnosed as well, and honey production was evaluated only during production. HB was high and heterogeneous, averaging 80% ± 9.7%. Its highest expression was observed at lower altitudes. The infestation degree was low (3.47% ± 1.56%), although the mite was detected in all colonies upon sampling. A negative correlation was observed between HB and Varroa infestation in the first sampling (−0.49 **), suggesting that the high- and mid-altitude HB colonies underwent the lowest infestation rates, regardless of sampling. The correlations between HB and production were significant (0.26 *), indicating a positive effect of HB on production, meaning that colonies with high HB obtained the highest honey production (25.08 ± 4.82 kg/hive). The HB of bees showed an inverse relationship with altitude and it tended to reduce the effect of Varroa infestation, favoring honey production and, thus, suggesting the feasibility of selecting colonies with high HB.


2016 ◽  
Vol 51 (2) ◽  
pp. 156-171
Author(s):  
А.В. СПРЫГИН ◽  
◽  
Ю.Ю. БАБИН ◽  
Е.М. ХАНБЕКОВА ◽  
Л.Е. РУБЦОВА ◽  
...  

2019 ◽  
Vol 10 (3) ◽  
pp. 778-788
Author(s):  
William De Jesús May-Itzá ◽  
Luis Abdelmir Abdelmir Medina Medina

Se evaluó la eficacia del humo de los frutos secos de Guazuma ulmifolia y los vapores de timol en el control del ácaro Varroa destructor infestando colonias de abejas africanizadas (Apis mellifera) de Yucatán. Se utilizaron tres tratamientos: Grupo 1 (G1), las colonias de abejas recibieron 5 a 8 bocanadas de humo de los frutos secos de G. ulmifolia dos veces por semana, durante un período de tres semanas; Grupo 2 (G2), las colonias recibieron 4-8 g de cristales de timol con tres aplicaciones cada siete días, y Grupo 3 (G3 o grupo control) las colonias no recibieron ningún tratamiento durante las tres semanas del experimento. Se colectaron 200 a 300 abejas adultas de cada colonia previo a la aplicación de los tratamientos (día 0) y a los 7, 14 y 21 días después de las aplicaciones, con la finalidad de determinar los niveles de infestación y eficacia de los tratamientos. Los resultados indican que los niveles de infestación de V. destructor en las abejas adultas disminuyeron al final del experimento (21 días) y fueron estadísticamente diferentes para los tres tratamientos, siendo menor para G2. La eficacia al final de los tratamientos fue de 41 y 69 %, para G1 y G2, respectivamente. Estos resultados corroboran que la aplicación de cristales de timol es una alternativa para el control del ácaro V. destructor en Yucatán, y que la aplicación del humo de los frutos secos de G. ulmifolia reduce los niveles de infestación de este parásito en comparación con las colonias que no recibieron ningún tipo de tratamiento (G3).


Apidologie ◽  
2012 ◽  
Vol 43 (6) ◽  
pp. 685-697 ◽  
Author(s):  
Takuma Matsuoka ◽  
Takuji Kawashima ◽  
Tadashi Nakamura ◽  
Yoshihiro Kanamaru ◽  
Tomio Yabe

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


2021 ◽  
Vol 13 (15) ◽  
pp. 8305
Author(s):  
Cristiano Ziegler ◽  
Tiago Sinigaglia ◽  
Mario Eduardo Santos Martins ◽  
Adriano Mendonça Souza

Bees play a fundamental role in the ecological balance of ecosystems, due to the pollination process they carry out on crops, including the production of honey. However, the mortality of bees is a significant concern; bee mortality can occur for several reasons, such as pesticides, mites, viruses, climate change, pathogens and a reduction in food resources and nests. The honey bee (Apis mellifera) is the most widely used bee for commercial pollination and honey production. Therefore, the main objective is to compare the development of patent families and article publications related to the reduction in A. meliífera mortality. Data on patent families were collected on the Orbit platform, while data on scientific articles were collected on the Scopus database, with a time interval of 1980–2019. Subsequently, the data were analyzed in order to show the main priority countries, main assignees, and main IPC (International Patent Classification) codes, an analysis of the technology life cycle and the correlation between the data of patent families and articles published. The technologies that help to decrease bee mortality showed a technological maturity rate of 27.15% for patent families data and 53.35% for data from articles published in journals. It was noticed that the principal interest regarding the reduction in A. mellifera mortality is focused on universities, mainly in the United States and China.


Author(s):  
Aimê de Almeida Longuini ◽  
Gabriel Moreno Martineli ◽  
Marcelo Polizel Camilli ◽  
Daniel Cavalcante Brambila de Barros ◽  
José Cavalcante Souza Vieira ◽  
...  

BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
Author(s):  
R Scott Cornman ◽  
Michael C Schatz ◽  
J Spencer Johnston ◽  
Yan-Ping Chen ◽  
Jeff Pettis ◽  
...  

2016 ◽  
Vol 60 (2) ◽  
pp. 119-128
Author(s):  
Georgios Goras ◽  
Chrysoula Tananaki ◽  
Sofia Gounari ◽  
Elissavet Lazaridou ◽  
Dimitrios Kanelis ◽  
...  

Abstract We investigated the rearing of drone larvae grafted in queen cells. From the 1200 drone larvae that were grafted during spring and autumn, 875 were accepted (72.9%) and reared as queens. Drone larvae in false queen cells received royal jelly of the same composition and of the same amounts as queen larvae. Workers capped the queen cells as if they were drones, 9-10 days after the egg laying. Out of 60 accepted false queen cells, 21 (35%) were capped. The shape of false queen cells with drone larvae is unusually long with a characteristically elongate tip which is probably due to the falling of larvae. Bees start the destruction of the cells when the larvae were 3 days old and maximised it before and after capping. Protecting false queen cells in the colony by wrapping, reversing them upside down, or placing in a horizontal position, did not help. The only adult drones that emerged from the false queen cells were those protected in an incubator and in push-in cages. Adult drones from false queen cells had smaller wings, legs, and proboscis than regular drones. The results of this study verify previous reports that the bees do not recognise the different sex of the larvae at least at the early stage of larval development. The late destruction of false queen cells, the similarity in quality and quantity of the produced royal jelly, and the bigger drone cells, allow for the use of drone larvae in cups for the production of royal jelly.


Sign in / Sign up

Export Citation Format

Share Document