Analysis of a Tubular Linear Permanent Magnet Motor for Reciprocating Compressor Applications

2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.

2015 ◽  
Vol 793 ◽  
pp. 274-279 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal bin Mohd Nor

This paper presents the design validation and optimization of a moving-magnet tubular linear permanent magnet motor (TLPMM) with a trapezoidal permanent magnets shape. The design optimization was implemented by two-dimensional Finite-Element Analysis (2-D FEA) and the validation has been established by using Matlab M-file. The proposed motor has been designed to produce 85 W output power which is enough to operate the linear reciprocating compressor of a household refrigerator system. The purpose of optimization is to achieve maximum efficiency and minimum losses, where the angle of PMs (β) and split-ratio (Rm/Re) after optimization the motor produce the highest efficiency of 93.8 %.


Author(s):  
Ömer Faruk Güney ◽  
Ahmet Çelik ◽  
Ahmet Fevzi Bozkurt ◽  
Kadir Erkan

This paper presents the electromagnetic and mechanical analysis of an axial flux permanent magnet (AFPM) motor for high speed (12000 rpm) rotor which is vertically suspended by magnetic bearings. In the analysis, a prototype AFPM motor with a double-sided rotor and a coreless stator between the rotors are considered. Firstly, electromagnetic analysis of the motor is carried out by using magnetic equivalent circuit method. Then, the rotor disk thickness is determined based on a rotor axial displacement due to the attractive force between the permanent magnets placed on opposite rotor disks. Hereafter, an analytical solution is carried out to determine the natural frequencies of the rotor-shaft system. Finally, 3D finite element analysis (FEA) is carried out to verify the analytical results and some experimental results are given to verify the analytical and numerical results and prove the stable high-speed operation.


2012 ◽  
Vol 516-517 ◽  
pp. 1742-1745
Author(s):  
Yan Li ◽  
Zeng Jie Zhang ◽  
Jia Kuan Xia ◽  
Gui Hong Feng

Electromagnetic vibration is produced by radical exciting force waves acting on iron cores of permanent magnet motors. In order to reduce radial electromagnetic force, a surface mounted permanent magnet synchronous motor was analyzed. According to the electromagnetic force wave of analytical formula in the case of no-load, the main force wave order and force wave frequency were analyzed. Properly selecting the pole arc coefficient could reduce the amplitude of electromagnetic force. By finite element analysis, the results show that reduce the sinusoidal distortion rate of the flux density, electromagnetic vibration of the motor can be reduced to some extent, but not the best choice.


Author(s):  
Sangmoon Hwang ◽  
Dennis K. Lieu

Abstract For motors with low speeds and loads, torque pulsation by the reluctance torque is an important source of vibration and control difficulty. In this paper, the magnetic field of a motor is calculated by finite element method and the periodic reluctance torque is determined using Maxwell stress method and time stepping method, and then decomposed using Fourier series expansion. The purpose of this paper is to characterize design parameters on the reluctance torque and to design a permanent magnet motor with a reluctance torque less vulnerable to vibration, without sacrificing the motor performance. The design parameters include stator slot width, permanent magnet slot width, airgap length and magnetization direction. A new design with a less populated frequency spectrum of the reluctance torque is proposed after characterizing individual effect of design parameters. Gradual magnetization, by gradually increasing the thickness of the permanent magnets at edges, yields a smooth shape for the reluctance torque with reduced harmonics.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shijun Chen ◽  
Qi Zhang ◽  
Surong Huang

To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3639
Author(s):  
Rundong Huang ◽  
Chunhua Liu ◽  
Zaixin Song ◽  
Hang Zhao

Electric machines with high torque density are needed in many applications, such as electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates both axial-flux and radial-flux machine topologies in a compact space, which effectively improves the copper utilization of the machine. First, the radial rotor can balance the large axial forces on axial rotors and prevent them from deforming due to the forces. On the other hand, the machine adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with different parameters are compared to obtain an optimal structure. These indicated that the proposed ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force (EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the proposed ARFPM machine had the highest torque density and relatively small torque ripple.


Author(s):  
A. Boglietti ◽  
M. Chiampi ◽  
D. Chiarabaglio ◽  
M. Tartaglia

1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280


Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


Sign in / Sign up

Export Citation Format

Share Document